OFFSET
0,3
COMMENTS
Stirling transform of A007696.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..360
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k) * A007696(k).
a(n) ~ n! / (Gamma(1/4) * 5^(1/4) * n^(3/4) * log(5/4)^(n + 1/4)). - Vaclav Kotesovec, Aug 14 2021
O.g.f. (conjectural): 1/(1 - x/(1 - 5*x/(1 - 5*x/(1 - 10*x/(1 - 9*x/(1 - 15*x/(1 - ... - (4*n-3)*x/(1 - 5*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type. - Peter Bala, Aug 22 2023
a(0) = 1; a(n) = Sum_{k=1..n} (4 - 3*k/n) * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 09 2023
a(0) = 1; a(n) = a(n-1) - 5*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
MAPLE
g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
MATHEMATICA
nmax = 18; CoefficientList[Series[1/(5 - 4 Exp[x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Aug 09 2021
STATUS
approved