OFFSET
0,2
COMMENTS
Riordan array (f(x),x*g(x)), where g(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + ... is the o.g.f. for A002294 and f(x) = g(x)/(5 - 4*g(x)) = 1 + 5*x + 45*x^2 + 455*x^3 + 4845*x^4 + ... is the o.g.f. for A001449.
More generally, if (R(n,k))n,k>=0 is a proper Riordan array and m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 4 and b = 3. See A092392, A264772, A264773 and A113139 for further examples.
LINKS
Peter Bala, A 4-parameter family of embedded Riordan arrays
E. Lebensztayn, On the asymptotic enumeration of accessible automata, Section 2, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 3, 2010, 75-80, Section 2.
R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics, CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
FORMULA
T(n,k) = binomial(5*n - 4*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(5*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(4*n + 1)*binomial(5*n,n)*x^n.
EXAMPLE
Triangle begins
n\k | 0 1 2 3 4 5 6 7
------+---------------------------------------------
0 | 1
1 | 5 1
2 | 45 6 1
3 | 455 55 7 1
4 | 4845 560 66 8 1
5 | 53130 5985 680 78 9 1
6 | 593775 65780 7315 816 91 10 1
7 | 6724520 736281 80730 8855 969 105 11 1
...
MAPLE
MATHEMATICA
Table[Binomial[5 n - 4 k, 4 n - 3 k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)
PROG
(Magma) /* As triangle */ [[Binomial(5*n-4*k, 4*n-3*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Nov 30 2015
STATUS
approved