login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264774 Triangle T(n,k) = binomial(5*n - 4*k, 4*n - 3*k), 0 <= k <= n. 3
1, 5, 1, 45, 6, 1, 455, 55, 7, 1, 4845, 560, 66, 8, 1, 53130, 5985, 680, 78, 9, 1, 593775, 65780, 7315, 816, 91, 10, 1, 6724520, 736281, 80730, 8855, 969, 105, 11, 1, 76904685, 8347680, 906192, 98280, 10626, 1140, 120, 12, 1, 886163135, 95548245, 10295472, 1107568, 118755, 12650, 1330, 136, 13, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Riordan array (f(x),x*g(x)), where g(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + ... is the o.g.f. for A002294 and f(x) = g(x)/(5 - 4*g(x)) = 1 + 5*x + 45*x^2 + 455*x^3 + 4845*x^4 + ... is the o.g.f. for A001449.

More generally, if (R(n,k))n,k>=0 is a proper Riordan array and m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 4 and b = 3. See A092392, A264772, A264773 and A113139 for further examples.

LINKS

Table of n, a(n) for n=0..54.

P. Bala, A 4-parameter family of embedded Riordan arrays

E. Lebensztayn, On the asymptotic enumeration of accessible automata, Section 2, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 3, 2010, 75-80

R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics, Section 5.6 CreateSpace Independent Publishing Platform 2006, ISBN-13: 978-1502925244

FORMULA

T(n,k) = binomial(5*n - 4*k, n - k).

O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(5*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(4*n + 1)*binomial(5*n,n)*x^n.

EXAMPLE

Triangle begins

  n\k |       0      1     2    3   4   5   6   7

------+---------------------------------------------

   0  |       1

   1  |       5      1

   2  |      45      6     1

   3  |     455     55     7    1

   4  |    4845    560    66    8   1

   5  |   53130   5985   680   78   9   1

   6  |  593775  65780  7315  816  91  10   1

   7  | 6724520 736281 80730 8855 969 105  11  1

...

MAPLE

A264774:= proc(n, k) binomial(5*n - 4*k, 4*n - 3*k); end proc:

seq(seq(A264774(n, k), k = 0..n), n = 0..10);

MATHEMATICA

Table[Binomial[5 n - 4 k, 4 n - 3 k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)

PROG

(MAGMA) /* As triangle */ [[Binomial(5*n-4*k, 4*n-3*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015

CROSSREFS

Cf. A001449 (column 0), A079589(column 1). Cf. A002294, A007318, A092392 (C(2n-k,n), A113139, A119301 (C(3n-k,n-k)), A264772, A264773.

Sequence in context: A221366 A134274 A134275 * A114154 A297899 A134273

Adjacent sequences:  A264771 A264772 A264773 * A264775 A264776 A264777

KEYWORD

nonn,tabl,easy

AUTHOR

Peter Bala, Nov 30 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 3 18:40 EDT 2020. Contains 333198 sequences. (Running on oeis4.)