login
A133871
a(n) = the definite integral Integral_{0..1} Product_{j=1..n} 4*sin^2(Pi*j*x) dx.
4
2, 4, 6, 10, 12, 20, 24, 34, 44, 64, 78, 116, 148, 208, 286, 410, 556, 808, 1120, 1620, 2308, 3352, 4784, 6980, 10064, 14680, 21296, 31128, 45276, 66288, 96712, 141654, 207156, 303716, 444748, 652612, 956884, 1404920, 2062080, 3029564, 4450120
OFFSET
1,1
COMMENTS
This quantity arises in some examples associated to the dynamical Mertens's theorem for quasihyperbolic toral automorphisms.
The function being integrated to compute a_n vanishes on the set of points in the Farey sequence of level n. I am particularly interested in knowing how large the sequence is asymptotically.
a(n) = coefficient of x^(n*(n+1)/2) in the polynomial (-1)^n*Product_{k=1..n} (1-x^k)^2, and is the maximal such coefficient as well. - Steven Finch, Feb 03 2009
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..1000 (terms 1..174 from Robert Israel)
Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
Jeffrey Gaither, Guy Louchard, Stephan Wagner, and Mark Daniel Ward, Resolution of T. Ward's Question and the Israel-Finch Conjecture: Precise Analysis of an Integer Sequence Arising in Dynamics, Combinatorics, Probability and Computing, 24 (2015), 195-215. Special Issue Honouring the Memory of Philippe Flajolet.
S. Jaidee, S. Stevens and T. Ward, Mertens' theorem for toral automorphisms, arXiv:0801.2082 [math.DS], 2008-2010.
S. Jaidee, S. Stevens and T. Ward, Mertens' theorem for toral automorphisms, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1819-1824.
T. Ward, D. W. Cantrell and R. Israel, sci.math.research discussion, 2008.
FORMULA
a(n) = sum of squares of coefficients in Product_{k=1..n} (1-x^k). - Paul D. Hanna, Nov 30 2010
a(n) ~ c * d^n / sqrt(n), where d = 1.48770584269062356180051131... and c = 2.40574583936181024... [Ward, 2013]. - Vaclav Kotesovec, May 03 2018
EXAMPLE
a(2) = 4 since Integral_{0..1} sin^2(Pi*x) sin^2(2*Pi*x) dx = 1/4.
MAPLE
a:= n->int(product(4*(sin(Pi*j*x))^2, j=1..n), x=0..1); seq(a(n), n=1..10);
# second Maple program:
A133871:= k -> (-1)^k*coeff(mul((t^j-1)^2, j=1..k), t, k*(k+1)/2);
# Robert Israel, Mar 15 2013
MATHEMATICA
p = 1; Table[p = Expand[p*(1 - x^n)^2]; Max[(-1)^n*CoefficientList[p, x]], {n, 1, 100}] (* Vaclav Kotesovec, May 03 2018 *)
(* The constant "d" *) Chop[-E^(-I*(Pi^2*(1 + 6*x^2) - 6*PolyLog[2, E^(2*I*Pi*x)]) / (6*Pi*x)) /. x -> (x /. FindRoot[Pi*(Pi*(-1 + 6*x^2) + 12*I*x*Log[1 - E^(2*I*Pi*x)]) + 6*PolyLog[2, E^(2*I*Pi*x)], {x, 4/5}, WorkingPrecision -> 100])] (* Vaclav Kotesovec, May 04 2018 *)
PROG
(PARI) a(n)=sum(k=0, n*(n+1)/2, polcoeff(prod(m=1, n, 1-x^m+x*O(x^k)), k)^2) \\ Paul D. Hanna
CROSSREFS
Sequence in context: A068336 A293821 A194944 * A068514 A074645 A125286
KEYWORD
nonn
AUTHOR
Thomas Ward, Jan 07 2008
EXTENSIONS
More terms from Steven Finch, Feb 03 2009
STATUS
approved