This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133874 n modulo 4 repeated 4 times. 4
 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Periodic with length 4^2=16. LINKS FORMULA a(n)=(1+floor(n/4)) mod 4. a(n)=A010873(A002265(n+4)). a(n)=1+floor(n/4)-4*floor((n+4)/16). a(n)=(((n+4) mod 16)-(n mod 4))/4. a(n)=((n+4-(n mod 4))/4) mod 4. G.f. g(x)=(1+x+x^2+x^3+2x^4+2x^5+2x^6+2x^7+3x^8+3x^9+3x^10+3x^11)/(1-x^16). G.f. g(x)=((1-x^4)*(1+2x^4+3x^8))/((1-x)(1-x^16)). G.f. g(x)=(3x^16-4x^12+1)/((1-x)(1-x^4)(1-x^16)). G.f. g(x)=(1+2x^4+3x^8)/((1-x)(1+x^4)(1+x^8)). MATHEMATICA Flatten[Table[Table[Mod[n, 4], {4}], {n, 30}]] (* Harvey P. Dale, Dec 22 2013 *) CROSSREFS Cf. A000040, A133620-A133625, A133630, A038509, A133634-A133636. Cf. A133884, A133880, A133890, A133900, A133910. Sequence in context: A104186 A184320 A092363 * A053384 A321857 A186313 Adjacent sequences:  A133871 A133872 A133873 * A133875 A133876 A133877 KEYWORD nonn AUTHOR Hieronymus Fischer, Oct 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)