OFFSET
1,2
COMMENTS
Let a meander be defined as in the link and m = 2. Then T(n,k) counts the invertible meanders of length m(n+1) built from arcs with central angle 360/m whose binary representation have mk '1's. - Peter Luschny, Dec 19 2011
Antidiagonal sums = A110320. - Philippe Deléham, Jun 08 2013
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1..150).
Peter Luschny, Meanders.
FORMULA
a(n) = n * A001263(n,k).
T(n,k) = binomial(n,k)*binomial(n,k-1). - Philippe Deléham, Jun 08 2013
G.f.: x*d(N(x,y))/dx, where N(x,y) is g.f. for Narayana numbers A001263. - Vladimir Kruchinin, Oct 22 2021
EXAMPLE
First few rows of the triangle are:
1;
2, 2;
3, 9, 3;
4, 24, 24, 4;
5, 50, 100, 50, 5;
6, 90, 300, 300, 90, 6;
...
Row 4 = (4, 24, 24, 4) = 4 * (1, 6, 6, 1), where (1, 6, 6, 1) = row 4 of the Narayana triangle. - Gary W. Adamson
T(3,1) = 3 because the invertible meanders of length 8 and central angle 180 degree which have two '1's in their binary representation are {10000100, 10010000, 11000000}. - Peter Luschny, Dec 19 2011
MAPLE
A132812 := (n, k) -> k*binomial(n, k)^2/(n-k+1);
seq(print(seq(A132812(n, k), k=0..n-1)), n=1..6); # Peter Luschny, Dec 19 2011
MATHEMATICA
Table[k Binomial[n, k]^2/(n - k + 1), {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Nov 15 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Sep 01 2007
EXTENSIONS
New name from Peter Luschny, Dec 19 2011
a(53) corrected by Michael De Vlieger, Nov 15 2017
STATUS
approved