login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131595
Decimal expansion of 3*(sqrt(25 + 10*sqrt(5))), the surface area of a regular dodecahedron with edges of unit length.
14
2, 0, 6, 4, 5, 7, 2, 8, 8, 0, 7, 0, 6, 7, 6, 0, 3, 0, 7, 3, 1, 0, 8, 1, 4, 3, 7, 2, 8, 6, 6, 3, 3, 1, 5, 1, 9, 2, 8, 8, 8, 4, 9, 0, 0, 4, 0, 1, 2, 2, 3, 7, 9, 9, 5, 0, 4, 8, 5, 1, 3, 6, 4, 8, 4, 2, 8, 6, 4, 2, 7, 9, 0, 6, 5, 0, 7, 5, 9, 4, 7, 7, 5, 9, 8, 9, 2, 9, 4, 8, 9, 6, 6, 5, 1, 0, 5, 2, 8, 8, 5, 9, 2, 6, 5, 1, 3, 7, 0, 5, 5, 4, 1, 7, 7, 0, 0, 3, 1, 9
OFFSET
2,1
COMMENTS
Surface area of a regular dodecahedron: A = 3*(sqrt(25 + 10*sqrt(5)))* a^2, where 'a' is the edge.
LINKS
Eric Weisstein's World of Mathematics, Dodecahedron
Wikipedia, Platonic solid
FORMULA
From Stanislav Sykora, Nov 30 2013: (Start)
Equals 15/tan(Pi/5).
Equals 15*phi/xi, where phi is the golden ratio (A001622) and xi its associate (A182007). (End)
EXAMPLE
20.64572880706760307310814372866331519288849004012237995...
MAPLE
evalf(3*(sqrt(25+10*sqrt(5))), 130); # Muniru A Asiru, Nov 02 2018
MATHEMATICA
RealDigits[3 Sqrt[25+10Sqrt[5]], 10, 120][[1]] (* Harvey P. Dale, Jun 21 2011 *)
PROG
(PARI) default(realprecision, 100); 3*(sqrt(25 + 10*sqrt(5))) \\ G. C. Greubel, Nov 02 2018
(Magma) SetDefaultRealField(RealField(100)); 3*(Sqrt(25 + 10*Sqrt(5))); // G. C. Greubel, Nov 02 2018
CROSSREFS
Cf. A102769, A001622 (phi), A182007 (associate of phi), A010527 (icosahedron/10), A010469 (octahedron), A002194 (tetrahedron). - Stanislav Sykora, Nov 30 2013
Sequence in context: A256850 A242561 A372767 * A290826 A124228 A115879
KEYWORD
nonn,cons,easy
AUTHOR
Omar E. Pol, Aug 30 2007
EXTENSIONS
More terms from Harvey P. Dale, Jun 21 2011
STATUS
approved