|
|
A131594
|
|
Decimal expansion of sqrt(2)/3, the volume of a regular octahedron with edge length 1.
|
|
8
|
|
|
4, 7, 1, 4, 0, 4, 5, 2, 0, 7, 9, 1, 0, 3, 1, 6, 8, 2, 9, 3, 3, 8, 9, 6, 2, 4, 1, 4, 0, 3, 2, 3, 2, 6, 9, 2, 8, 5, 6, 5, 5, 7, 2, 9, 1, 7, 9, 2, 3, 1, 6, 0, 2, 4, 3, 9, 2, 2, 2, 6, 5, 7, 9, 3, 3, 0, 2, 4, 4, 1, 5, 9, 4, 8, 7, 3, 6, 9, 0, 1, 2, 9, 5, 0, 1, 2, 9, 1, 7, 8, 1, 0, 9, 2, 1, 3, 8, 5, 7, 5, 7, 8, 3, 3, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Volume of a regular octahedron: V = ((sqrt(2))/3)* a^3, where 'a' is the edge.
|
|
LINKS
|
Ivan Panchenko, Table of n, a(n) for n = 0..1000
Wikipedia, Platonic solid
|
|
FORMULA
|
Equals A002193/3 = A010464/A010482. - R. J. Mathar, Dec 11 2009
|
|
EXAMPLE
|
0.471404520791031682933896...
|
|
MATHEMATICA
|
RealDigits[Sqrt[2]/3, 10, 120][[1]] (* Harvey P. Dale, May 27 2012 *)
|
|
PROG
|
(PARI) sqrt(2)/3 \\ G. C. Greubel, Jul 06 2017
|
|
CROSSREFS
|
Cf. A020829 (regular tetrahedron volume), A102208 (regular icosahedron volume), A102769 (regular dodecahedron volume).
Cf. A179587.
Sequence in context: A256507 A123734 A011519 * A100402 A135004 A086234
Adjacent sequences: A131591 A131592 A131593 * A131595 A131596 A131597
|
|
KEYWORD
|
cons,easy,nonn
|
|
AUTHOR
|
Omar E. Pol, Aug 30 2007
|
|
EXTENSIONS
|
More digits from R. J. Mathar, Dec 11 2009
|
|
STATUS
|
approved
|
|
|
|