This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131113 T(n,k) = 5*binomial(n,k) - 4*I, where I is the identity matrix. 6
 1, 5, 1, 5, 10, 1, 5, 15, 15, 1, 5, 20, 30, 20, 1, 5, 25, 50, 50, 25, 1, 5, 30, 75, 100, 75, 30, 1, 5, 35, 105, 175, 175, 105, 35, 1, 5, 40, 140, 280, 350, 280, 140, 40, 1, 5, 45, 180, 420, 630, 630, 420, 180, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums = A048487: (1, 6, 16, 36, 76, 156, ...). LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened FORMULA T(n,k) = 5*A007318(n,k) - 4*I; A007318 = Pascal's triangle, I = Identity matrix. EXAMPLE First few rows of the triangle are:   1;   5,  1;   5, 10,  1;   5, 15, 15,  1;   5, 20, 30,  20,  1;   5, 25, 50,  50, 25,  1;   5, 30, 75, 100, 75, 30, 1; ... MAPLE seq(seq(`if`(k=n, 1, 5*binomial(n, k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019 MATHEMATICA Table[If[k==n, 1, 5*Binomial[n, k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *) PROG (PARI) T(n, k) = if(k==n, 1, 5*binomial(n, k)); # G. C. Greubel, Nov 18 2019 (MAGMA) [k eq n select 1 else 5*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019 (Sage) @CachedFunction def T(n, k):     if (k==n): return 1 else: return 5*binomial(n, k) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019 (GAP) T:= function(n, k)     if k=n then return 1;     else return 5*Binomial(n, k);     fi;  end; Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 18 2019 CROSSREFS Cf. A007318, A048487, A131110, A131112, A131114, A131115. Sequence in context: A170903 A319663 A255166 * A139426 A143384 A046611 Adjacent sequences:  A131110 A131111 A131112 * A131114 A131115 A131116 KEYWORD nonn,tabl AUTHOR Gary W. Adamson, Jun 15 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 04:23 EST 2019. Contains 329991 sequences. (Running on oeis4.)