login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131113 T(n,k) = 5*binomial(n,k) - 4*I, where I is the identity matrix. 6
1, 5, 1, 5, 10, 1, 5, 15, 15, 1, 5, 20, 30, 20, 1, 5, 25, 50, 50, 25, 1, 5, 30, 75, 100, 75, 30, 1, 5, 35, 105, 175, 175, 105, 35, 1, 5, 40, 140, 280, 350, 280, 140, 40, 1, 5, 45, 180, 420, 630, 630, 420, 180, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums = A048487: (1, 6, 16, 36, 76, 156, ...).

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

FORMULA

T(n,k) = 5*A007318(n,k) - 4*I; A007318 = Pascal's triangle, I = Identity matrix.

EXAMPLE

First few rows of the triangle are:

  1;

  5,  1;

  5, 10,  1;

  5, 15, 15,  1;

  5, 20, 30,  20,  1;

  5, 25, 50,  50, 25,  1;

  5, 30, 75, 100, 75, 30, 1;

...

MAPLE

seq(seq(`if`(k=n, 1, 5*binomial(n, k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019

MATHEMATICA

Table[If[k==n, 1, 5*Binomial[n, k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)

PROG

(PARI) T(n, k) = if(k==n, 1, 5*binomial(n, k)); # G. C. Greubel, Nov 18 2019

(MAGMA) [k eq n select 1 else 5*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019

(Sage)

@CachedFunction def T(n, k):

    if (k==n): return 1

else: return 5*binomial(n, k) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019

(GAP)

T:= function(n, k)

    if k=n then return 1;

    else return 5*Binomial(n, k);

    fi;  end;

Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 18 2019

CROSSREFS

Cf. A007318, A048487, A131110, A131112, A131114, A131115.

Sequence in context: A170903 A319663 A255166 * A139426 A143384 A046611

Adjacent sequences:  A131110 A131111 A131112 * A131114 A131115 A131116

KEYWORD

nonn,tabl

AUTHOR

Gary W. Adamson, Jun 15 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 04:23 EST 2019. Contains 329991 sequences. (Running on oeis4.)