login
A131111
T(n, k) = 3*binomial(n,k) - 2*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
4
1, 3, 1, 3, 6, 1, 3, 9, 9, 1, 3, 12, 18, 12, 1, 3, 15, 30, 30, 15, 1, 3, 18, 45, 60, 45, 18, 1, 3, 21, 63, 105, 105, 63, 21, 1, 3, 24, 84, 168, 210, 168, 84, 24, 1, 3, 27, 108, 252, 378, 378, 252, 108, 27, 1
OFFSET
0,2
COMMENTS
Row sums = A033484: (1, 4, 10, 22, 46, ...) = 3*2^n - 2.
FORMULA
T(n,k) = 3*A007318(n,k) - 2*I(n,k), where A007318 = Pascal's triangle and I = Identity matrix.
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 2*x - x*y)/((1 - x*y)*(1 - x - x*y)). - Petros Hadjicostas, Feb 20 2021
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
3, 1;
3, 6, 1;
3, 9, 9, 1;
3, 12, 18, 12, 1;
3, 15, 30, 30, 15, 1;
3, 18, 45, 60, 45, 18, 1;
...
MAPLE
seq(seq(`if`(k=n, 1, 3*binomial(n, k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
MATHEMATICA
Table[If[k==n, 1, 3*Binomial[n, k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
PROG
(PARI) T(n, k) = if(k==n, 1, 3*binomial(n, k)); \\ G. C. Greubel, Nov 18 2019
(Magma) [k eq n select 1 else 3*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==n): return 1
else: return 3*binomial(n, k)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
(GAP)
T:= function(n, k)
if k=n then return 1;
else return 3*Binomial(n, k);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 18 2019
CROSSREFS
KEYWORD
nonn,tabl,easy,less
AUTHOR
Gary W. Adamson, Jun 15 2007
STATUS
approved