login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130793
Periodic sequence with period 3: 1, 3, 5.
4
1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1
OFFSET
0,2
COMMENTS
Continued fraction expansion of (9+sqrt(145))/16. - Klaus Brockhaus, Apr 28 2010
Decimal expansion of 5/37. - Pontus von Brömssen, Dec 11 2024
FORMULA
a(n) = 3+2*A049347(n+1). O.g.f.: (1+3x+5x^2)/((1-x)(1+x+x^2)). - R. J. Mathar, Jun 13 2008
a(n) = ((n+1)^6 - n^6) mod 6. - Gary Detlefs, Mar 25 2012
a(n) = (2n+1) mod 6. - Wesley Ivan Hurt, Mar 30 2014
a(n) = 2*(n mod 3) + 1. - Bruno Berselli, Jul 25 2018
a(n) = (2*r^n*(r-1)-2*r^(2*n)*(r+2)+9)/3 where r=(-1+i*sqrt(3))/2. - Ammar Khatab, Nov 28 2020
MAPLE
A130793:=n->((2*n+1) mod 6); seq(A130793(n), n=0..100); # Wesley Ivan Hurt, Mar 30 2014
MATHEMATICA
Table[Mod[2 n + 1, 6], {n, 0, 100}] (* Wesley Ivan Hurt, Mar 30 2014 *)
PadRight[{}, 105, {1, 3, 5}] (* After Harvey P. Dale *)
Nest[Flatten[# /. {1 -> {1, 3}, 3 -> {5, 1}, 5 -> {3, 5}}] &, {1}, 7] (* or *) CoefficientList[Series[-(5 x^2 + 3 x + 1)/(x^3 - 1), {x, 0, 105}], x] (* or *) LinearRecurrence[{0, 0, 1}, {1, 3, 5}, 105] (* Robert G. Wilson v, Jul 25 2018 *)
PROG
(PARI) a(n)=[1, 3, 5][n%3+1] \\ Charles R Greathouse IV, Jun 02 2011
(Magma) &cat [[1, 3, 5]^^35]; // Vincenzo Librandi, Jul 25 2018
CROSSREFS
Cf. A176907 (decimal expansion of (9+sqrt(145))/16). - Klaus Brockhaus, Apr 28 2010
Sequence in context: A049246 A231186 A021078 * A243854 A084243 A275056
KEYWORD
nonn,easy,less,changed
AUTHOR
Paul Curtz, Jul 15 2007
STATUS
approved