login
A130795
Multiaxial coordinate vectors normalized at Theta=0 and Phi=0 and rounded to the nearest integer ( "n" factor is added to make the integers show up better): based on cyclotomic angles for solving polynomials of the type x^n-1=0.
1
1, 2, 2, 3, 1, 1, 4, 0, 4, 0, 5, 0, 3, 3, 0, 6, 2, 2, 6, 2, 2, 7, 3, 0, 6, 6, 0, 3, 8, 4, 0, 4, 8, 4, 0, 4, 9, 5, 0, 2, 8, 8, 2, 0, 5, 10, 7, 1, 1, 7, 10, 7, 1, 1, 7
OFFSET
1,2
COMMENTS
The multidimensional coordinates give generalized cylinders in n dimension. The 3-dimensional example is a right cylinder : {x, y, z} = {Cos[p] Cos[t], Cos[p + (2 Pi)/3] Cos[(2 Pi)/3 + t], Cos[p + (4 Pi)/3] Cos[(4 Pi)/3 + t]}
REFERENCES
A torus based on the n=3 version of these coordinates was an MAA sticker by Paul Bourke: http://local.wasp.uwa.edu.au/~pbourke/surfaces_curves/tritorus/index.html
FORMULA
a(theta,phi,i,n)=Cos[theta + 2*i*Pi/n]*Cos[phi + 2*i*Pi/n]; t(n,i)=Round[n*a(0,0,i,n)]
EXAMPLE
{1},
{2, 2},
{3, 1, 1},
{4, 0, 4, 0},
{5, 0, 3, 3, 0},
{6, 2, 2, 6, 2, 2},
{7, 3, 0, 6, 6, 0, 3},
{8, 4, 0, 4, 8, 4, 0, 4},
{9, 5, 0, 2, 8, 8, 2, 0, 5},
{10, 7, 1, 1, 7, 10, 7, 1, 1, 7}
MATHEMATICA
a[t_, p_, i_, n_] = Cos[t + 2*i*Pi/n]*Cos[p + 2*i*Pi/n]; Table[Table[Round[n*a[t, p, i, n]], {i, 0, n - 1}], {n, 1, 10}] /. t -> 0 /. p -> 0; Flatten[%]
CROSSREFS
Sequence in context: A078827 A157806 A328732 * A367634 A195663 A362749
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Jul 15 2007
STATUS
approved