login
A130694
Exponents of powers of 2 that contain all ten digits.
10
68, 70, 79, 82, 84, 87, 88, 89, 94, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144
OFFSET
1,1
COMMENTS
It is believed that every power of 2 beyond 2^86 contains the digit 0.
For k in {51,67,72,76,81,86}, 2^k contains all nonzero digits, but does not contain 0. - Dimiter Skordev, Oct 05 2021
LINKS
FORMULA
A043537(A000079(a(n))) = 10. - Reinhard Zumkeller, Jul 29 2007
a(n) = n + 91 for n >= 78 (conjectured). - Chai Wah Wu, Jan 27 2020
EXAMPLE
2^68 = 295147905179352825856.
MATHEMATICA
A2 := {}; Do[If[Length[Union[ IntegerDigits[2^ n]]] == 10, A2 = Join[A2, {n}]], {n, 1, 200}]; Print[A2]
Select[Range[200], Min[DigitCount[2^#]]>0&] (* Harvey P. Dale, Aug 03 2019 *)
PROG
(PARI) is_A130694(n)=9<#Set(Vec(Str(1<<n))) \\ M. F. Hasler, Aug 25 2012
CROSSREFS
Complement of A130696.
Sequence in context: A043871 A269987 A058906 * A269748 A153831 A306113
KEYWORD
nonn,base
AUTHOR
Greg Dresden, Jul 10 2007
EXTENSIONS
Displayed terms double-checked by M. F. Hasler, Aug 25 2012
STATUS
approved