OFFSET
1,3
COMMENTS
It is believed that 168 is the last number in this list; 2^168 is a 51-digit number that contains all the digits except (oddly enough) 2.
There are no more terms less than 10^10. - David Radcliffe, Apr 11 2019
EXAMPLE
20 is in this list because 2^20 = 1048576, which doesn't contain all ten digits.
68 is the first number not in this list; 2^68 = 295147905179352825856 and this contains all ten digits.
MATHEMATICA
A2 := {}; Do[If[Length[Union[ IntegerDigits[2^ n]]] != 10, A2 = Join[A2, {n}]], {n, 1, 3000}]; Print[A2]
Select[Range[10^6]-1, MemberQ[DigitCount[2^#], 0]&] (* Hans Rudolf Widmer, Jun 23 2021 *)
PROG
(Python) print([n for n in range(1000) if len(set(str(2**n))) < 10]) # David Radcliffe, Apr 11 2019
(PARI) hasalldigits(n) = #vecsort(digits(n), , 8)==10
is(n) = !hasalldigits(2^n) \\ Felix Fröhlich, Apr 11 2019
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Greg Dresden, Jul 10 2007
EXTENSIONS
a(1) = 0 prepended by David Radcliffe, Apr 11 2019
STATUS
approved