OFFSET
0,3
COMMENTS
The numerator of the integral is 2,1,2,1,2,1,...; the moments of the integral are 2/(n+1)^2. See 2nd formula.
Partial sums of the positive elements give the absolute values of A122576. - Omar E. Pol, Aug 22 2011
Partial sums of the positive elements give A212760. - Omar E. Pol, Dec 28 2013
Conjecture: denominator of 4/n - 2/n^2. - Wesley Ivan Hurt, Jul 11 2016
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 1, Sect. 7, Problem 73.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..960
Olivier Bordelles, A Multidimensional Cesaro Type Identity and Applications, J.
Int. Seq. 18 (2015) # 15.3.7.
John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
FORMULA
G.f.: x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4)/(1-x^2)^3.
a(n+1) = denominator((1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*n*t)(-((Pi-t)/i)^2)), i=sqrt(-1).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 5. - Paul Curtz, Mar 07 2011
a(n) is the numerator of the coefficient of x^4 in the Maclaurin expansion of exp(-n*x^2). - Francesco Daddi, Aug 04 2011
O.g.f. as a Lambert series: x*Sum_{n >= 1} J_2(n)*x^n/(1 + x^n), where J_2(n) denotes the Jordan totient function A007434(n). See Pólya and Szegő. - Peter Bala, Dec 28 2013
From Ilya Gutkovskiy, Jul 11 2016: (Start)
E.g.f.: x*((2*x + 1)*sinh(x) + (x + 2)*cosh(x))/2.
Sum_{n>=1} 1/a(n) = 5*Pi^2/24. [corrected by Amiram Eldar, Sep 11 2022] (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/24 (A222171). - Amiram Eldar, Sep 11 2022
From Peter Bala, Jan 16 2024: (Start)
a(n) = Sum_{1 <= i, j <= n} (-1)^(1 + gcd(i,j,n)) = Sum_{d | n} (-1)^(d+1) * J_2(n/d), that is, the Dirichlet convolution of the pair of multiplicative functions f(n) = (-1)^(n+1) and the Jordan totient function J_2(n) = A007434(n). Hence this sequence is multiplicative. Cf. A193356 and A309337.
Dirichlet g.f.: (1 - 2/2^s)*zeta(s-2). (End)
a(n) = Sum_{1 <= i, j <= n} (-1)^(n + gcd(i, n)*gcd(j, n)) = Sum_{d|n, e|n} (-1)^(n+e*d) * phi(n/d)*phi(n/e). - Peter Bala, Jan 22 2024
MAPLE
MATHEMATICA
Table[n^2*(3-(-1)^n)/4, {n, 0, 60}] (* Wesley Ivan Hurt, Jul 11 2016 *)
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 1, 2, 9, 8, 25}, 60] (* Harvey P. Dale, Dec 27 2023 *)
PROG
(Magma) [n^2*(3-(-1)^n)/4: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n) = lcm(2, n^2)/2; \\ Andrew Howroyd, Jul 25 2018
(SageMath) [n^2*(1+(n%2))/2 for n in range(61)] # G. C. Greubel, Apr 04 2023
CROSSREFS
KEYWORD
easy,frac,nonn,mult
AUTHOR
Paul Barry, Apr 02 2007
EXTENSIONS
More terms from Michel Marcus, Dec 28 2013
STATUS
approved