This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129194 a(n) = n^2*(3/4 - (-1)^n/4). 12
 0, 1, 2, 9, 8, 25, 18, 49, 32, 81, 50, 121, 72, 169, 98, 225, 128, 289, 162, 361, 200, 441, 242, 529, 288, 625, 338, 729, 392, 841, 450, 961, 512, 1089, 578, 1225, 648, 1369, 722, 1521, 800, 1681, 882, 1849, 968, 2025, 1058, 2209, 1152, 2401, 1250, 2601, 1352 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The numerator of the integral is 2,1,2,1,2,1....; the moments of the integral are 2/(n+1)^2. The sequence alternates between twice a square and an odd square, A001105(n) and A016754(n). Partial sums of the positive elements give the absolute values of A122576. - Omar E. Pol, Aug 22 2011 Partial sums of the positive elements give A212760. - Omar E. Pol, Dec 28 2013 Conjecture: denominator of 4/n-2/n^2. - Wesley Ivan Hurt, Jul 11 2016 Multiplicative because both A000290 and A040001 are. - Andrew Howroyd, Jul 25 2018 REFERENCES G. Polya and G. Szego, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 1, Sect. 7, Problem 73. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..960 John M. Campbell, An Integral Representation of KekulĂ© Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011. Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1). FORMULA G.f.: x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4)/(1-x^2)^3; a(n+1) = denominator((1/(2*Pi))*int(exp(i*n*t)(-((Pi-t)/i)^2),t,0,2*Pi)), i=sqrt(-1). a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5. - Paul Curtz, Mar 07 2011 a(n) = numerator of coefficient of x^4 in the Maclaurin expansion of exp(-n*x^2). - Francesco Daddi, Aug 04 2011 O.g.f. as a Lambert series: x*Sum {n >= 1} J_2(n)*x^n/(1 + x^n), where J_2(n) denotes the Jordan totient function A007434(n). See Polya and Szego. - Peter Bala, Dec 28 2013 From Ilya Gutkovskiy, Jul 11 2016: (Start) E.g.f.: x*((2*x + 1)*sinh(x) + (x + 2)*cosh(x))/2. Sum_{n>=1} 1/a(n) = 7*Pi^2/48 = 1.43931730849219813191336327081... (End) a(n) = A000290(n) / A040001(n). - Andrew Howroyd, Jul 25 2018 MAPLE A129194:=n->n^2*(3/4 - (-1)^n/4): seq(A129194(n), n=0..80); # Wesley Ivan Hurt, Jul 11 2016 MATHEMATICA Table[n^2*(3/4 - (-1)^n/4), {n, 0, 60}] (* Wesley Ivan Hurt, Jul 11 2016 *) PROG (MAGMA) [n^2*(3/4-(-1)^n/4): n in [0..50]]; // Vincenzo Librandi, Apr 26 2011 (PARI) a(n) = lcm(2, n^2)/2; \\ Andrew Howroyd, Jul 25 2018 CROSSREFS Cf. A016742, A010713, A105398, A152020, A000290, A061038, A061040, A061050. - Paul Curtz, Nov 21 2008 Cf. A040001, A129204. Sequence in context: A069815 A215025 A162954 * A300780 A272347 A214300 Adjacent sequences:  A129191 A129192 A129193 * A129195 A129196 A129197 KEYWORD easy,frac,nonn,mult AUTHOR Paul Barry, Apr 02 2007 EXTENSIONS More terms from Michel Marcus, Dec 28 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 05:52 EDT 2019. Contains 328045 sequences. (Running on oeis4.)