OFFSET
0,3
COMMENTS
Hankel transform of a(n) is A047656(n+1)=3^C(n+1,2). In general, the Hankel transform of the expansion of c(x(1+r*x)) is (r+1)^C(n+1,2).
Number of paths weakly above X-axis from (0,0) to (0,2n) using steps (1,1), (1,-1) and two colors of (3,1). - David Scambler, Jun 21 2013
REFERENCES
Barry, Paul; Hennessy, Aoife Four-term recurrences, orthogonal polynomials and Riordan arrays. J. Integer Seq. 15 (2012), no. 4, Article 12.4.2, 19 pp.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
a(n)=sum{k=0..n, C(k,n-k)*2^(n-k)*C(k)};
a(n)=(1/(2*pi))*int(x^n*sqrt(8+4x-x^2)/(x+2),x,2-2*sqrt(3),2+2*sqrt(3));
Conjecture: (n+1)*a(n) +2*(2-n)*a(n-1) +4*(5-4n)*a(n-2) +16*(2-n)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
G.f.: Q(0), where Q(k)= 1 + (4*k+1)*x*(1+2*x)/(k + 1 - x*(1+2*x)*(2*k+2)*(4*k+3)/(2*x*(1+2*x)*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
a(n) ~ sqrt(3-sqrt(3)) * (2*(1+sqrt(3)))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4*x*(1+2*x)])/(2*x*(1+2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
PROG
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 01 2007
STATUS
approved