login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128546
Inrepfigit (INverse REPetitive FIbonacci-like diGIT) numbers (or Htiek numbers).
3
17, 21, 25, 42, 63, 84, 143, 286, 2355, 5821, 6618, 11709, 12482, 33747, 39571, 129109, 466957, 1162248, 1565166, 1968084, 3636638, 3853951, 4898376, 6065280, 13443745, 13933175, 17118698, 22421197, 24153462377
OFFSET
1,1
COMMENTS
This sequence is similar to A007629 (Keith numbers). It consists of the numbers n>9 with the following property: n is a term of the sequence S whose first k terms are the k digits of n (with the first term equal to the units digit) and with S(n+1)=sum of the k previous terms.
EXAMPLE
42 is in the sequence because the terms of the sequence it creates are 2, 4, 6, 10, 16, 26, 42, ...
MATHEMATICA
iKeithQ[n_Integer] := Module[{b = Reverse[IntegerDigits[n]], s, k = 0}, s = Total[b]; While[s < n, AppendTo[b, s]; k++; s = 2*s - b[[k]]]; s == n]; Select[Range[10, 100000], iKeithQ] (* T. D. Noe, Mar 15 2011 *)
PROG
(C++)
#include <stdio.h>
// Here is a (messy) C++ code which finds the terms of the sequence below 100000000
int main() {
int k2;
for (int k = 10; k < 100000000; k++) {
k2 = k;
int array[9];
for (int i = 0; i <= 8; i++) {
array[i] = k2 % 10;
k2 /= 10;
}
bool c = true;
int check = 8;
for (int i = 0; i <= 8; i++) {
if ((array[8 - i] == 0) && c)
check--;
else
c = false;
}
bool b = false;
int n = 0;
while (n <= k && !b) {
n = 0;
for (int i = 0; i <= check; i++)
n += array[i];
if (n == k)
b = true;
for (int i = 0; i < check; i++)
array[i] = array[i + 1];
array[check] = n;
}
if (b)
printf("%d", k);
}
return 0;
}
CROSSREFS
Cf. A007629.
Cf. A097060 (reverse of these numbers).
Sequence in context: A282109 A373583 A307863 * A188200 A376026 A060875
KEYWORD
base,nonn
AUTHOR
Pierre Karpman (pierre.karpman(AT)laposte.net), Oct 23 2007
STATUS
approved