login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127448 Triangle T(n,k) read by rows: matrix product A054525 * A127648. 3
1, -1, 2, -1, 0, 3, 0, -2, 0, 4, -1, 0, 0, 0, 5, 1, -2, -3, 0, 0, 6, -1, 0, 0, 0, 0, 0, 7, 0, 0, 0, -4, 0, 0, 0, 8, 0, 0, -3, 0, 0, 0, 0, 0, 9, 1, -2, 0, 0, -5, 0, 0, 0, 0, 10, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 2, 0, -4, 0, -6, 0, 0, 0, 0, 0, 12, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 1, -2, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..104.

FORMULA

T(n,k) = sum _{j=k..n} A054525(n,j)*A127648(j,k) = k*A054525(n,k).

sum_{k=1..n} T(n,k) = A000010(n) (row sums).

T(n,1) = A008683(n).

EXAMPLE

First few rows of the triangle are;

1;

-1, 2;

-1, 0, 3;

0, -2, 0, 4;

-1, 0, 0, 0, 5;

1, -2, -3, 0, 0, 6;

-1, 0, 0, 0, 0, 0, 7;

0, 0, 0, -4, 0, 0, 0, 8;

0, 0, -3, 0, 0, 0, 0, 0, 9;

1, -2, 0, 0,-5, 0, 0, 0, 0, 10;

...

MAPLE

A127648 := proc(n, k) if n = k then n; else 0 ; fi; end:

A054525 := proc(n, k) if k = n then 1; elif n mod k = 0 then numtheory[mobius](n/k) ; else 0 ; fi; end:

A127448 := proc(n, k) add( A054525(n, j)*A127648(j, k), j=k..n) ; end: seq(seq( A127448(n, k), k=1..n), n=1..15) ;

CROSSREFS

Cf. A000010, A008683, A051731.

Sequence in context: A050464 A014405 A143153 * A128179 A178780 A058558

Adjacent sequences:  A127445 A127446 A127447 * A127449 A127450 A127451

KEYWORD

tabl,sign,easy

AUTHOR

Gary W. Adamson, Jan 14 2007

EXTENSIONS

Converted comments to formulas, extended - R. J. Mathar, Sep 11 2009

Corrected A-number typo in a formula - R. J. Mathar, Sep 17 2009

Corrected last example line by John Mason, Jan 07 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 06:36 EST 2018. Contains 299390 sequences. (Running on oeis4.)