login
A127267
a(n) = floor(n/pi(n)), where pi(n)=A000720(n) is the number of primes <=n.
0
2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3
OFFSET
2,1
FORMULA
a(n) = A097456(n) + 1. - Filip Zaludek, Dec 16 2016
EXAMPLE
a(28)=3 because there are 9 primes not exceeding 28 (namely, 2,3,5,7,11,13,17,19,23) and floor(28/9)=3.
MAPLE
with(numtheory): a:=n->floor(n/pi(n)): seq(a(n), n=2..140); # Emeric Deutsch, Apr 15 2007
MATHEMATICA
Table[Floor[n/PrimePi@ n], {n, 2, 120}] (* Michael De Vlieger, Dec 17 2016 *)
PROG
(PARI) a(n) = n\primepi(n); \\ Michel Marcus, Dec 16 2016
CROSSREFS
Cf. A000720.
Sequence in context: A338650 A033105 A106703 * A268173 A008617 A339369
KEYWORD
nonn
AUTHOR
Leroy Quet, Mar 27 2007
EXTENSIONS
More terms from Emeric Deutsch, Apr 15 2007
STATUS
approved