login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127268 If the prime-factorization of n is n = product{p|n} p^b(p,n) (p = distinct primes divisors of n, each b(p,n) is a positive integer), then a(n) is (sum{p|n} p^b(p,n)) taken mod (sum{p|n} p). 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0, 2, 6, 0, 0, 4, 0, 6, 0, 2, 0, 4, 0, 6, 0, 0, 0, 2, 0, 0, 6, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 6, 0, 2, 0, 0, 0, 0, 0, 6, 6, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

LINKS

Table of n, a(n) for n=1..100.

FORMULA

A008475(n) mod A008472(n), if n>1. - R. J. Mathar, Nov 01 2007

EXAMPLE

40 = 2^3 *5^1. So a(40) = 2^3 + 5^1 (mod (2+5)) = 13 (mod 7) = 6.

MAPLE

A008475 := proc(n) local ifs ; if n =1 then 0; else ifs := ifactors(n)[2] ; add(op(1, i)^op(2, i), i =ifs) ; fi ; end: A008472 := proc(n) local ifs ; if n =1 then 0; else ifs := ifactors(n)[2] ; add(op(1, i), i =ifs) ; fi ; end: A127268 := proc(n) if n = 1 then 0 ; else A008475(n) mod A008472(n) ; fi ; end: seq(A127268(n), n=1..100) ; # R. J. Mathar, Nov 01 2007

CROSSREFS

Sequence in context: A249856 A086012 A248394 * A252459 A083918 A083895

Adjacent sequences:  A127265 A127266 A127267 * A127269 A127270 A127271

KEYWORD

nonn

AUTHOR

Leroy Quet, Mar 27 2007

EXTENSIONS

More terms from R. J. Mathar, Nov 01 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 24 22:31 EDT 2017. Contains 292441 sequences.