login
A126914
Numbers n such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^16 + k^18 + k^19 is prime.
1
1, 9, 37, 40, 60, 69, 85, 114, 147, 156, 174, 183, 255, 289, 312, 324, 336, 349, 361, 373, 418, 451, 493, 499, 511, 520, 534, 549, 649, 657, 673, 676, 715, 741, 787, 855, 862, 874, 883, 888, 897, 952, 960, 1021, 1087, 1092, 1104, 1126, 1141, 1147, 1171, 1209
OFFSET
1,2
LINKS
MATHEMATICA
a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^18 + n^19], AppendTo[a, n]], {n, 1, 1400}]; a
PROG
(PARI) is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^18+n^19) \\ Charles R Greathouse IV, Jun 13 2017
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Dec 31 2006
STATUS
approved