login
A041150
Numerators of continued fraction convergents to sqrt(85).
10
9, 37, 46, 83, 378, 6887, 27926, 34813, 62739, 285769, 5206581, 21112093, 26318674, 47430767, 216041742, 3936182123, 15960770234, 19896952357, 35857722591, 163327842721, 2975758891569, 12066363408997
OFFSET
0,1
COMMENTS
From Johannes W. Meijer, Jun 17 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A087798.
For the terms of the periodic sequence of the continued fraction for sqrt(85) see A010158. We observe that its period is five. The decimal expansion of sqrt(85) is A010536. (End)
LINKS
FORMULA
From Johannes W. Meijer, Jun 17 2010: (Start)
a(5*n) = A087798(3*n+1), a(5*n+1) = (A087798(3*n+2) - A087798(3*n+1))/2, a(5*n+2) = (A087798(3*n+2) + A087798(3*n+1))/2, a(5*n+3) = A087798(3*n+2) and a(5*n+4) = A087798(3*n+3)/2. (End)
G.f.: -(x^9-9*x^8+37*x^7-46*x^6+83*x^5+378*x^4+83*x^3+46*x^2+37*x+9) / (x^10+756*x^5-1). - Colin Barker, Nov 04 2013
MATHEMATICA
Numerator[Convergents[Sqrt[85], 30]] (* Vincenzo Librandi, Oct 29 2013 *)
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved