login
A126912
Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^15 is prime.
1
17, 47, 71, 72, 95, 99, 107, 113, 123, 134, 135, 147, 159, 239, 257, 261, 263, 278, 299, 324, 348, 435, 477, 500, 521, 534, 536, 546, 563, 567, 585, 633, 635, 642, 716, 737, 750, 753, 852, 905, 974, 1088, 1178, 1181, 1205, 1272, 1283, 1298, 1311, 1331, 1356
OFFSET
1,1
LINKS
MATHEMATICA
a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^15], AppendTo[a, n]], {n, 1, 1400}]; a
PROG
(PARI) is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^15) \\ Charles R Greathouse IV, Jun 13 2017
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Dec 31 2006
STATUS
approved