The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125250 Square array, read by antidiagonals, where A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1). 0
 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 5, 1, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 3, 11, 3, 0, 0, 0, 0, 0, 0, 1, 13, 13, 1, 0, 0, 0, 0, 0, 0, 0, 9, 26, 9, 0, 0, 0, 0, 0, 0, 0, 0, 4, 32, 32, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 26, 63, 26, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 80, 80, 14, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 COMMENTS It appears that the main diagonal (1,1,2,5,11,...) is A051286 (Whitney number of level n of the lattice of the ideals of the fence of size 2 n) that the diagonals (0,1,2,5,13,...) adjacent to the main diagonal are A110320 (Number of blocks in all RNA secondary structures with n nodes) and that the n-th antidiagonal sum = A094686(n-1) (a Fibonacci convolution). The n-th row sum = A002605(n). LINKS FORMULA A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1). From Peter Bala, Nov 07 2017: (Start) T(n,k) = Sum_{i = floor((n+1)/2)..k} binomial(i,n-i)* binomial(i,k-i). Square array = A026729 * transpose(A026729), where A026729 is viewed as a lower unit triangular array. Omitting the first row and column of square array = A030528 * transpose(A030528). O.g.f. 1/(1 - t*(1 + t)*x - t*(1 + t)*x^2) = 1 + (t + t^2)*x + (t + 2*t^2 + 2*t^3 + t^4)*x^2 + .... Cf. A109466 with o.g.f. 1/(1 - t*x - t*x^2). The n-th row polynomial R(n,t) satisfies R(n,t) = R(n,-1 - t). R(n,t) = (-1)^n*sqrt(-t*(1 + t))^n*U(n, 1/2*sqrt(-t*(1 + t))), where U(n,x) denotes the n-th Chebyshev polynomial of the second kind. The sequence of row polynomials R(n,t) is a divisibility sequence of polynomials, that is, if m divides n then R(m,t) divides R(n,t) in the polynomial ring Z[t]. R(n,1) = A002605; R(n,2) = A057089. (End) EXAMPLE Array starts as: 1 0 0 0 0 0 0 ... 0 1 1 0 0 0 0 ... 0 1 2 2 1 0 0 ... 0 0 2 5 5 3 1 0 ... 0 0 1 5 11 13 9 4 1 0... 0 0 0 3 13 26 32 26 14 5 1 0 ... 0 0 0 1 9 32 63 80 71 45 20 6 1 0 ... 0 0 0 0 4 26 80 153 201 191 135 71 27 7 1 0 ... ... MATHEMATICA T[n_, k_] := Sum[Binomial[i, n-i] Binomial[i, k-i], {i, Floor[(n+1)/2], k}]; Table[T[n-k, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 12 2019 *) PROG (PARI) A=matrix(22, 22); A[1, 1]=1; A[2, 2]=1; A[2, 1]=0; A[1, 2]=0; A[3, 2]=1; A[2, 3]=1; for(n=3, 22, for(k=3, 22, A[n, k]=A[n-2, k-2]+A[n-1, k-2]+A[n-2, k-1]+A[n-1, k-1])); for(n=1, 22, for(i=1, n, print1(A[n-i+1, i], ", "))) CROSSREFS Cf. A051286, A110320, A002605, A026729, A030528, A057089, A109466. Sequence in context: A178176 A093569 A073091 * A048113 A028961 A110177 Adjacent sequences: A125247 A125248 A125249 * A125251 A125252 A125253 KEYWORD nonn,tabl,easy AUTHOR Gerald McGarvey, Jan 15 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 22:51 EST 2022. Contains 358421 sequences. (Running on oeis4.)