

A125251


a(n)=sqrt(A051779(n+2)1)/30.


4



5, 6, 8, 9, 14, 19, 43, 44, 77, 85, 91, 112, 113, 142, 155, 195, 196, 212, 226, 300, 308, 321, 351, 363, 399, 456, 461, 467, 485, 541, 555, 602, 604, 618, 638, 646, 720, 728, 779, 789, 891, 896, 923, 980, 1009, 1099, 1105, 1150, 1176, 1234, 1253, 1287, 1392
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Consider twin primes p, q = p + 2 such that pq + 2 is prime. It would seem that there are infinitely many such p. Except for p = 3 and p = 5 all such p appear to be of the form 30k  1 and the values of k give the current sequence.  James R. Buddenhagen, Jan 09 2007
This is true. Prime numbers (other than 2,3,5) are 30k + 1,7,11,13,17,19,23,29. p+2 is then prime only for p = 30k + 11,17,29; then p(p+2)+2 is 30k + 25,25,1 respectively, so the last case mod 30 is the only one possible.  Gareth McCaughan (gareth.mccaughan(AT)pobox.com), Jan 09 2007
This is the sequence of positive integers k such that p = 30*k  1, q = 30*k + 1 and p*q + 2 are all prime.  James R. Buddenhagen, Jan 09 2007


LINKS

Zak Seidov, Table of n, a(n) for n=1..2000


EXAMPLE

a(1)=5 because A051779(3)=22501 and sqrt(225011)/30=5,
a(2)=6 because A051779(4)=32401 and sqrt(324011)/30=6.


PROG

(PARI) isok(n) = isprime(p = 30*n+1) && isprime(q = 30*n1) && isprime(p*q+2); \\ Michel Marcus, Oct 11 2013


CROSSREFS

Cf. A051779.
Sequence in context: A187843 A155146 A308708 * A271728 A247047 A218866
Adjacent sequences: A125248 A125249 A125250 * A125252 A125253 A125254


KEYWORD

nonn


AUTHOR

Zak Seidov, Nov 26 2006


STATUS

approved



