login
A125201
a(n) = 8*n^2 - 7*n + 1.
3
2, 19, 52, 101, 166, 247, 344, 457, 586, 731, 892, 1069, 1262, 1471, 1696, 1937, 2194, 2467, 2756, 3061, 3382, 3719, 4072, 4441, 4826, 5227, 5644, 6077, 6526, 6991, 7472, 7969, 8482, 9011, 9556, 10117, 10694, 11287, 11896, 12521, 13162, 13819, 14492, 15181, 15886
OFFSET
1,1
COMMENTS
Central terms of the triangle in A125199.
Sequence found by reading the line from 2, in the direction 2, 19, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 05 2011
FORMULA
a(n) = 1 + A051870(n). - Omar E. Pol, Sep 05 2011
From Arkadiusz Wesolowski, Dec 25 2011: (Start)
a(1) = 2, a(n) = a(n-1) + 16*n - 15.
a(n) = 2*a(n-1) - a(n-2) + 16 with a(1) = 2 and a(2) = 19.
G.f.: (1 - x + 16*x^2)/(1 - x)^3. (End)
Sum_{n>=1} 1/a(n) = (psi(9/16+sqrt(17)/16) - psi(9/16-sqrt(17)/16))/sqrt(17) = 0.61242052... - R. J. Mathar, Apr 22 2024
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(8*x^2 + x + 1) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
MATHEMATICA
Table[8*n^2 - 7*n + 1, {n, 44}] (* Arkadiusz Wesolowski, Feb 15 2012 *)
PROG
(Magma) [8*n^2-7*n+1:n in [1..44]]; // Vincenzo Librandi, Dec 27 2010
(PARI) a(n)=8*n^2-7*n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Nov 24 2006
STATUS
approved