This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125172 Triangle T(n,k) with partial column sums of the even indexed Fibonacci numbers. 2
 1, 3, 1, 8, 4, 1, 21, 12, 5, 1, 55, 33, 17, 6, 1, 144, 88, 50, 23, 7, 1, 377, 232, 138, 73, 30, 8, 1, 987, 609, 370, 211, 103, 38, 9, 1, 2584, 1596, 979, 581, 314, 141, 47, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS "Partial column sums" means the 1st column are the even indexed Fibonacci numbers, the 2nd column shows the partial sums of the first column, the 3rd column the partial sums of the 2nd etc. - R. J. Mathar, Sep 06 2011 Mirror of the fission triangle A193667, as in the Mathematica program below.  [From Clark Kimberling, Aug 11 2011] LINKS FORMULA T(n,1)= A001906(n). T(n,k) = T(n-1,k-1) + T(n-1,k), k>1. T(n,k) = A125171(n,k), i.e., A125171 without column k=0. - R. J. Mathar, Sep 06 2011 Conjecture: T(n,k) = T(n,k-1) - A121460(n+1,k). - R. J. Mathar, Sep 06 2011 EXAMPLE First few rows of the triangle are: 1; 3, 1; 8, 4, 1; 21, 12, 5, 1; 55, 33, 17, 6, 1; 144, 88, 50, 23, 7, 1; ... MATHEMATICA z = 11; p[n_, x_] := (x + 1)^n; q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}]; p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A193667 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]]  (* A125172 *) (* Clark Kimberling, Aug 11 2011 *) CROSSREFS Cf. A105693 (row sums), A125171, A193667. Sequence in context: A054506 A101026 A055249 * A073732 A021318 A068437 Adjacent sequences:  A125169 A125170 A125171 * A125173 A125174 A125175 KEYWORD nonn,tabl,easy AUTHOR Gary W. Adamson, Nov 22 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 11:46 EDT 2019. Contains 322330 sequences. (Running on oeis4.)