login
A073732
Decimal expansion of lim_{n -> infinity} n*phi - Sum_{k=1..n} F(k+1)/F(k), where phi is the golden ratio and F(k) denotes the k-th Fibonacci number.
0
3, 1, 8, 4, 5, 2, 9, 6, 4, 0, 7, 4, 5, 0, 1, 0, 8, 1, 2, 9, 2, 1, 7, 5, 7, 2, 1, 3, 2, 6, 2, 4, 7, 6, 3, 9, 9, 3, 6, 1, 8, 7, 8, 2, 2, 7, 3, 0, 7, 5, 8, 3, 5, 2, 0, 9, 9, 0, 6, 4, 2, 6, 5, 9, 8, 4, 3, 4, 6, 8, 7, 8, 2, 6, 2, 1, 9, 0, 3, 3, 1, 1, 9, 0, 4, 9, 6, 5, 4, 1, 9, 6, 4, 5, 8, 2, 9, 6, 8, 7, 7, 0, 4, 7
OFFSET
0,1
FORMULA
Equals (1/2) * lim_{n -> infinity} n*sqrt(5) - Sum_{k=1..n} F(2*k)/F(k)^2.
From Amiram Eldar, Oct 05 2020: (Start)
Equals Sum_{k>=1} (-1)^(k+1)/(phi^k * F(k)).
Equals sqrt(5) * Sum_{k>=1} (-1)^(k+1)/(phi^(2*k) - (-1)^k). (End)
EXAMPLE
0.31845296407450108129217572132624763993618782273...
MATHEMATICA
f[n_] := f[n] = n *GoldenRatio - Sum[Fibonacci[k + 1]/Fibonacci[k], {k, 1, n}] // RealDigits[#, 10, 104]& // First; f[n=100]; While[f[n] != f[n-100], n = n+100]; f[n] (* Jean-François Alcover, Feb 13 2013 *)
CROSSREFS
Sequence in context: A055249 A125172 A344381 * A021318 A068437 A016477
KEYWORD
cons,easy,nonn
AUTHOR
Benoit Cloitre, Sep 01 2002
STATUS
approved