login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124550 Rectangular table, read by antidiagonals, such that the g.f. of row n, R_n(y), satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0, with R_0(y)=1. 18
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 30, 16, 0, 1, 5, 26, 91, 159, 66, 0, 1, 6, 40, 204, 666, 1056, 348, 0, 1, 7, 57, 385, 1899, 5955, 8812, 2321, 0, 1, 8, 77, 650, 4345, 21180, 65794, 92062, 19437, 0, 1, 9, 100, 1015, 8616, 57876, 287568, 901881 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Antidiagonal sums equal row 1 (A124551).

LINKS

Table of n, a(n) for n=0..62.

FORMULA

Let G_n(y) be the g.f. of row n in table A124560, then R_n(y) = G_n(y)^n and thus G_n(y) = Sum_{k>=0} y^k * R_{n*k}(y) for n>=0, where R_n(y) is the g.f. of row n in this table.

EXAMPLE

The g.f. of row n, R_n(y), simultaneously satisfies:

R_n(y) = [1 + y*R_{n}(y) + y^2*R_{2n}(y) + y^3*R_{3n}(y) +...]^n

more explicitly,

R_0 = [1 + y + y^2 + y^3 +... ]^0 = 1,

R_1 = [1 + y*R_1 + y^2*R_2 + y^3*R_3 + y^4*R_4 +...]^1,

R_2 = [1 + y*R_2 + y^2*R_4 + y^3*R_6 + y^4*R_8 +...]^2,

R_3 = [1 + y*R_3 + y^2*R_6 + y^3*R_9 + y^4*R_12 +...]^3,

R_4 = [1 + y*R_4 + y^2*R_8 + y^3*R_12 + y^4*R_16 +...]^4,

etc., for all rows.

Table begins:

1,0,0,0,0,0,0,0,0,0,...

1,1,2,5,16,66,348,2321,19437,203554,2661035,43399794,883165898,...

1,2,7,30,159,1056,8812,92062,1200415,19512990,395379699,9991017068,...

1,3,15,91,666,5955,65794,901881,15346419,324465907,8535776700,...

1,4,26,204,1899,21180,287568,4802716,99084889,2531896840,...

1,5,40,385,4345,57876,926340,18088835,434349525,12879458545,...

1,6,57,650,8616,133212,2447115,54419202,1481595429,49675372516,...

1,7,77,1015,15449,271677,5621371,139777303,4236941723,157754261392,...

1,8,100,1496,25706,506376,11637540,319211576,10629219251,...

1,9,126,2109,40374,880326,22228296,665618589,24097683942,...

1,10,155,2870,60565,1447752,39814650,1290831110,50395939380,...

1,11,187,3795,87516,2275383,67666852,2359273213,98672395096,...

1,12,222,4900,122589,3443748,110082100,4104444564,182882370066,...

1,13,260,6201,167271,5048472,172579056,6848496031,323591733868,...

1,14,301,7714,223174,7201572,262109169,11025158762,550236760920,...

1,15,345,9455,292035,10032753,387284805,17206288875,903909656190,...

1,16,392,11440,375716,13690704,558624184,26132289904,1440743993738,...

1,17,442,13685,476204,18344394,788813124,38746675145,2235979092419,...

1,18,495,16206,595611,24184368,1092983592,56235032046,3388787136045,...

1,19,551,19019,736174,31424043,1489009062,80068650785,5027951628273,...

1,20,610,22140,900255,40301004,1997816680,112053079180,7318490555455,...

1,21,672,25585,1090341,51078300,2643716236,154381866075,10469322413655,..

1,22,737,29370,1309044,64045740,3454745943,209695755346,14742078039007,..

1,23,805,33511,1559101,79521189,4463035023,281147592671,20461165963557,..

1,24,876,38024,1843374,97851864,5705183100,372473207208,28025203801701,..

PROG

(PARI) {T(n, k)=if(k==0, 1, if(n==0, 0, if(k==1, n, if(n<=k, Vec(( 1+x*Ser( vector(k, j, sum(i=0, j-1, T(n+i*n, j-1-i)) ) ))^n)[k+1], Vec(subst(Ser(concat(concat(0, Vec(subst(Ser(vector(k+1, j, T(j-1, k))), x, x/(1+x))/(1+x))), vector(n-k+1)) ), x, x/(1-x))/(1-x +x*O(x^(n))))[n]))))}

CROSSREFS

Rows: A124551, A124552, A124553, A124554, A124555, A124556; diagonals: A124557, A124558, A124559; variants: A124560, A124460, A124530, A124540.

Sequence in context: A085388 A144074 A124540 * A237018 A214776 A146326

Adjacent sequences:  A124547 A124548 A124549 * A124551 A124552 A124553

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Nov 07 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 22:28 EST 2014. Contains 252240 sequences.