login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124550 Rectangular table, read by antidiagonals, such that the g.f. of row n, R_n(y), satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0, with R_0(y)=1. 18
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 30, 16, 0, 1, 5, 26, 91, 159, 66, 0, 1, 6, 40, 204, 666, 1056, 348, 0, 1, 7, 57, 385, 1899, 5955, 8812, 2321, 0, 1, 8, 77, 650, 4345, 21180, 65794, 92062, 19437, 0, 1, 9, 100, 1015, 8616, 57876, 287568, 901881 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Antidiagonal sums equal row 1 (A124551).

LINKS

Table of n, a(n) for n=0..62.

FORMULA

Let G_n(y) be the g.f. of row n in table A124560, then R_n(y) = G_n(y)^n and thus G_n(y) = Sum_{k>=0} y^k * R_{n*k}(y) for n>=0, where R_n(y) is the g.f. of row n in this table.

EXAMPLE

The g.f. of row n, R_n(y), simultaneously satisfies:

R_n(y) = [1 + y*R_{n}(y) + y^2*R_{2n}(y) + y^3*R_{3n}(y) +...]^n

more explicitly,

R_0 = [1 + y + y^2 + y^3 +... ]^0 = 1,

R_1 = [1 + y*R_1 + y^2*R_2 + y^3*R_3 + y^4*R_4 +...]^1,

R_2 = [1 + y*R_2 + y^2*R_4 + y^3*R_6 + y^4*R_8 +...]^2,

R_3 = [1 + y*R_3 + y^2*R_6 + y^3*R_9 + y^4*R_12 +...]^3,

R_4 = [1 + y*R_4 + y^2*R_8 + y^3*R_12 + y^4*R_16 +...]^4,

etc., for all rows.

Table begins:

1,0,0,0,0,0,0,0,0,0,...

1,1,2,5,16,66,348,2321,19437,203554,2661035,43399794,883165898,...

1,2,7,30,159,1056,8812,92062,1200415,19512990,395379699,9991017068,...

1,3,15,91,666,5955,65794,901881,15346419,324465907,8535776700,...

1,4,26,204,1899,21180,287568,4802716,99084889,2531896840,...

1,5,40,385,4345,57876,926340,18088835,434349525,12879458545,...

1,6,57,650,8616,133212,2447115,54419202,1481595429,49675372516,...

1,7,77,1015,15449,271677,5621371,139777303,4236941723,157754261392,...

1,8,100,1496,25706,506376,11637540,319211576,10629219251,...

1,9,126,2109,40374,880326,22228296,665618589,24097683942,...

1,10,155,2870,60565,1447752,39814650,1290831110,50395939380,...

1,11,187,3795,87516,2275383,67666852,2359273213,98672395096,...

1,12,222,4900,122589,3443748,110082100,4104444564,182882370066,...

1,13,260,6201,167271,5048472,172579056,6848496031,323591733868,...

1,14,301,7714,223174,7201572,262109169,11025158762,550236760920,...

1,15,345,9455,292035,10032753,387284805,17206288875,903909656190,...

1,16,392,11440,375716,13690704,558624184,26132289904,1440743993738,...

1,17,442,13685,476204,18344394,788813124,38746675145,2235979092419,...

1,18,495,16206,595611,24184368,1092983592,56235032046,3388787136045,...

1,19,551,19019,736174,31424043,1489009062,80068650785,5027951628273,...

1,20,610,22140,900255,40301004,1997816680,112053079180,7318490555455,...

1,21,672,25585,1090341,51078300,2643716236,154381866075,10469322413655,..

1,22,737,29370,1309044,64045740,3454745943,209695755346,14742078039007,..

1,23,805,33511,1559101,79521189,4463035023,281147592671,20461165963557,..

1,24,876,38024,1843374,97851864,5705183100,372473207208,28025203801701,..

PROG

(PARI) {T(n, k)=if(k==0, 1, if(n==0, 0, if(k==1, n, if(n<=k, Vec(( 1+x*Ser( vector(k, j, sum(i=0, j-1, T(n+i*n, j-1-i)) ) ))^n)[k+1], Vec(subst(Ser(concat(concat(0, Vec(subst(Ser(vector(k+1, j, T(j-1, k))), x, x/(1+x))/(1+x))), vector(n-k+1)) ), x, x/(1-x))/(1-x +x*O(x^(n))))[n]))))}

CROSSREFS

Rows: A124551, A124552, A124553, A124554, A124555, A124556; diagonals: A124557, A124558, A124559; variants: A124560, A124460, A124530, A124540.

Sequence in context: A085388 A144074 A124540 * A237018 A214776 A146326

Adjacent sequences:  A124547 A124548 A124549 * A124551 A124552 A124553

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Nov 07 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 22:18 EDT 2015. Contains 261164 sequences.