OFFSET
0,8
COMMENTS
Antidiagonal sums equal row 1 (A124551).
FORMULA
Let G_n(y) be the g.f. of row n in table A124560, then R_n(y) = G_n(y)^n and thus G_n(y) = Sum_{k>=0} y^k * R_{n*k}(y) for n>=0, where R_n(y) is the g.f. of row n in this table.
EXAMPLE
The g.f. of row n, R_n(y), simultaneously satisfies:
R_n(y) = [1 + y*R_{n}(y) + y^2*R_{2n}(y) + y^3*R_{3n}(y) +...]^n
more explicitly,
R_0 = [1 + y + y^2 + y^3 +... ]^0 = 1,
R_1 = [1 + y*R_1 + y^2*R_2 + y^3*R_3 + y^4*R_4 +...]^1,
R_2 = [1 + y*R_2 + y^2*R_4 + y^3*R_6 + y^4*R_8 +...]^2,
R_3 = [1 + y*R_3 + y^2*R_6 + y^3*R_9 + y^4*R_12 +...]^3,
R_4 = [1 + y*R_4 + y^2*R_8 + y^3*R_12 + y^4*R_16 +...]^4,
etc., for all rows.
Table begins:
1,0,0,0,0,0,0,0,0,0,...
1,1,2,5,16,66,348,2321,19437,203554,2661035,43399794,883165898,...
1,2,7,30,159,1056,8812,92062,1200415,19512990,395379699,9991017068,...
1,3,15,91,666,5955,65794,901881,15346419,324465907,8535776700,...
1,4,26,204,1899,21180,287568,4802716,99084889,2531896840,...
1,5,40,385,4345,57876,926340,18088835,434349525,12879458545,...
1,6,57,650,8616,133212,2447115,54419202,1481595429,49675372516,...
1,7,77,1015,15449,271677,5621371,139777303,4236941723,157754261392,...
1,8,100,1496,25706,506376,11637540,319211576,10629219251,...
1,9,126,2109,40374,880326,22228296,665618589,24097683942,...
1,10,155,2870,60565,1447752,39814650,1290831110,50395939380,...
1,11,187,3795,87516,2275383,67666852,2359273213,98672395096,...
1,12,222,4900,122589,3443748,110082100,4104444564,182882370066,...
1,13,260,6201,167271,5048472,172579056,6848496031,323591733868,...
1,14,301,7714,223174,7201572,262109169,11025158762,550236760920,...
1,15,345,9455,292035,10032753,387284805,17206288875,903909656190,...
1,16,392,11440,375716,13690704,558624184,26132289904,1440743993738,...
1,17,442,13685,476204,18344394,788813124,38746675145,2235979092419,...
1,18,495,16206,595611,24184368,1092983592,56235032046,3388787136045,...
1,19,551,19019,736174,31424043,1489009062,80068650785,5027951628273,...
1,20,610,22140,900255,40301004,1997816680,112053079180,7318490555455,...
1,21,672,25585,1090341,51078300,2643716236,154381866075,10469322413655,..
1,22,737,29370,1309044,64045740,3454745943,209695755346,14742078039007,..
1,23,805,33511,1559101,79521189,4463035023,281147592671,20461165963557,..
1,24,876,38024,1843374,97851864,5705183100,372473207208,28025203801701,..
PROG
(PARI) {T(n, k)=if(k==0, 1, if(n==0, 0, if(k==1, n, if(n<=k, Vec(( 1+x*Ser( vector(k, j, sum(i=0, j-1, T(n+i*n, j-1-i)) ) ))^n)[k+1], Vec(subst(Ser(concat(concat(0, Vec(subst(Ser(vector(k+1, j, T(j-1, k))), x, x/(1+x))/(1+x))), vector(n-k+1)) ), x, x/(1-x))/(1-x +x*O(x^(n))))[n]))))}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 07 2006
STATUS
approved