login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A124313
Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5), starting 1,0,0,0,1.
4
1, 0, 0, 0, 1, 2, 3, 6, 12, 24, 47, 92, 181, 356, 700, 1376, 2705, 5318, 10455, 20554, 40408, 79440, 156175, 307032, 603609, 1186664, 2332920, 4586400, 9016625, 17726218, 34848827, 68510990, 134689060, 264791720, 520566815, 1023407412
OFFSET
1,6
LINKS
I. Flores, k-Generalized Fibonacci numbers, Fib. Quart., 5 (1967), 258-266.
Eric Weisstein's World of Mathematics, Pentanacci Number
FORMULA
G.f.: x*(1-x-x^2-x^3)/(1-x-x^2-x^3-x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009; checked and corrected by R. J. Mathar, Sep 16 2009
MATHEMATICA
f[n_]:= MatrixPower[{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, n][[ 1, 4]]; Array[f, 50]
LinearRecurrence[{1, 1, 1, 1, 1}, {1, 0, 0, 0, 1}, 40] (* G. C. Greubel, Aug 25 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1-2*x+x^4)/(1-2*x+x^6) )); // G. C. Greubel, Aug 25 2023
(SageMath)
def A124313_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-2*x+x^4)/(1-2*x+x^6) ).list()
A124313_list(50) # G. C. Greubel, Aug 25 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 25 2006
EXTENSIONS
Edited by Ralf Stephan, Oct 20 2013
STATUS
approved