login
A124312
Expansion of g.f. x^3*(1 - x)/(1 - x - x^2 - x^3 - x^4 - x^5).
4
0, 0, 1, 0, 1, 2, 4, 8, 15, 30, 59, 116, 228, 448, 881, 1732, 3405, 6694, 13160, 25872, 50863, 99994, 196583, 386472, 759784, 1493696, 2936529, 5773064, 11349545, 22312618, 43865452, 86237208, 169537887, 333302710, 655255875, 1288199132
OFFSET
1,6
COMMENTS
Second column of the n-th power of pentanacci matrix {{1,1,1,1,1},{1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}} read from bottom to top gives 5 numbers starting from position n.
a(n+5) equals the number of n-length binary words avoiding runs of zeros of lengths 5i+4, (i=0,1,2,...). - Milan Janjic, Feb 26 2015
LINKS
Martin Burtscher, Igor Szczyrba, RafaƂ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
MAPLE
f:= gfun:-rectoproc({a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)-a(n+5), a(0) = 0, a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 0}, a(n), remember):
seq(f(n), n=1..30); # Robert Israel, Apr 13 2017
MATHEMATICA
CoefficientList[Series[(x^3-x^4)/(1-x-x^2-x^3-x^4-x^5), {x, 0, 50}], x]
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); [0, 0] cat Coefficients(R!( x^3*(1-x)^2/(1-2*x+x^6) )); // G. C. Greubel, Aug 25 2023
(SageMath)
def A124312_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^2*(1-x)^2/(1-2*x+x^6) ).list()
A124312_list(50) # G. C. Greubel, Aug 25 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 25 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 29 2006, Jul 14 2007
Name corrected by Robert Israel, Apr 13 2017
STATUS
approved