

A123900


(n+3)!/(d(n)*d(n+1)*d(n+2)) where d(n) = cancellation factor in reducing Sum_{k=0...n} 1/k! to lowest terms.


7



6, 12, 60, 180, 2520, 1008, 18144, 18144, 3991680, 5987520, 155675520, 1089728640, 26153487360, 523069747200, 17784371404800, 12312257126400, 935731541606400, 4678657708032, 12772735542927360, 140500090972200960
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


REFERENCES

J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637641.


LINKS

Table of n, a(n) for n=0..19.
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.


FORMULA

(n+3)!/(A093101(n)*A093101(n+1)*A093101(n+2)) where A093101(n) = GCD(n!,1+n+n(n1)+...+n!)


EXAMPLE

a(2) = 60 because (2+3)!/(d(2)*d(3)*d(4)) =
5!/(GCD(2,5)*GCD(6,16)*GCD(24,65)) = 120/2 = 60.


MATHEMATICA

(A[n_] := If[n==0, 1, n*A[n1]+1]; d[n_] := GCD[A[n], n! ]; Table[(n+3)!/(d[n]*d[n+1]*d[n+2]), {n, 0, 21}])


CROSSREFS

Cf. A000522, A061354, A093101, A123899, A123901.
Sequence in context: A117762 A178957 A104362 * A103972 A299855 A121735
Adjacent sequences: A123897 A123898 A123899 * A123901 A123902 A123903


KEYWORD

easy,nonn


AUTHOR

Jonathan Sondow, Oct 18 2006


STATUS

approved



