login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123901 a(n) = (n+3)/GCD(d(n),d(n+2)) where d(n) = cancellation factor in reducing Sum_{k=0...n} 1/k! to lowest terms. 8
3, 4, 5, 3, 7, 4, 9, 1, 11, 6, 13, 7, 3, 8, 17, 9, 19, 2, 21, 11, 23, 12, 5, 1, 27, 14, 29, 3, 31, 16, 33, 17, 7, 18, 37, 19, 3, 4, 41, 21, 43, 22, 9, 23, 47, 24, 49, 5, 51, 2, 53, 27, 11, 28, 57, 29, 59, 6, 61, 31, 63, 32, 1, 33, 67, 34, 69, 7, 71, 36, 73, 1, 15, 38, 77, 3, 79, 8, 81 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..4096

J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.

J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.

J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.

FORMULA

a(n) = (n+3)/A124781(n) = (n+3)/gcd(A093101(n),A093101(n+2)) where A093101(n) = gcd(n!,1+n+n(n-1)+...+n!).

EXAMPLE

a(5) = 4 because (5+3)/gcd(d(5),d(7)) = 8/gcd(2,20) = 8/2 = 4.

MATHEMATICA

(A[n_] := If[n==0, 1, n*A[n-1]+1]; d[n_] := GCD[A[n], n! ]; Table[(n+3)/GCD[d[n], d[n+2]], {n, 0, 79}])

(* Second program, faster: *)

Table[(n + 3)/Apply[GCD, Map[GCD[#!, Floor[E*#!] - Boole[# == 0]] &, n + {0, 2}]], {n, 0, 78}] (* Michael De Vlieger, Jul 12 2017 *)

PROG

(PARI)

A000522(n) = sum(k=0, n, binomial(n, k)*k!); \\ This function from Joerg Arndt, Dec 14 2014

A093101(n) = gcd(n!, A000522(n));

m1=m2=1; for(n=0, 4096, m=m1; m1=m2; m2 = A093101(n+2); m124781 = gcd(m, m2); write("b093101.txt", n, " ", m); write("b124781.txt", n, " ", m124781); write("b123901.txt", n, " ", (n+3)/m124781)); \\ Antti Karttunen, Jul 12 2017

CROSSREFS

Cf. A000522, A061354, A093101, A123899, A123900, A124781.

Sequence in context: A276737 A270027 A271726 * A214682 A093395 A176774

Adjacent sequences:  A123898 A123899 A123900 * A123902 A123903 A123904

KEYWORD

easy,nonn

AUTHOR

Jonathan Sondow, Oct 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 21:17 EDT 2019. Contains 323504 sequences. (Running on oeis4.)