login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123899 (n+1)!/(d(n)*d(n+1)) where d(n) = cancellation factor in reducing Sum_{k=0...n} 1/k! to lowest terms. 7
1, 2, 3, 12, 60, 360, 252, 2016, 36288, 362880, 4989600, 11975040, 622702080, 8717829120, 65383718400, 5230697472000, 2736057139200, 49249028505600, 30411275102208, 608225502044160, 25545471085854720000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.

LINKS

Table of n, a(n) for n=0..20.

J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality

J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.

FORMULA

(n+1)!/(A093101(n)*A093101(n+1)) where A093101(n) = GCD(n!,1+n+n(n-1)+...+n!)

EXAMPLE

a(2) = 3 because (2+1)!/(d(2)*d(3)) = 3!/(GCD(2,5)*GCD(6,16)) =

6/2 = 3.

MATHEMATICA

(A[n_] := If[n==0, 1, n*A[n-1]+1]; d[n_] := GCD[A[n], n! ]; Table[(n+1)!/(d[n]*d[n+1]), {n, 0, 22}])

CROSSREFS

Cf. A000522, A061354, A093101, A123900, A123901.

Sequence in context: A092980 A191464 A052183 * A188588 A032133 A155579

Adjacent sequences:  A123896 A123897 A123898 * A123900 A123901 A123902

KEYWORD

easy,nonn

AUTHOR

Jonathan Sondow, Oct 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 17:48 EDT 2019. Contains 323395 sequences. (Running on oeis4.)