login
A123871
Expansion of g.f.: (1+x+x^2)/(1-4*x-4*x^2).
2
1, 5, 25, 120, 580, 2800, 13520, 65280, 315200, 1521920, 7348480, 35481600, 171320320, 827207680, 3994112000, 19285278720, 93117562880, 449611366400, 2170915717120, 10482108334080, 50612096204800, 244376818155520, 1179955657441280, 5697329902387200
OFFSET
0,2
LINKS
A. Burstein and T. Mansour, Words restricted by 3-letter ..., Annals of Combinatorics 7 (2003), 1-14. arXiv:math.CO/0112281
Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
FORMULA
a(n) = 4*a(n-1) + 4*a(n-2) for n>2. - Philippe Deléham, Sep 19 2009
MAPLE
seq(coeff(series((1+x+x^2)/(1-4*x-4*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Aug 08 2019
MATHEMATICA
CoefficientList[Series[(1+x+x^2)/(1-4*x-4*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 27 2012 *)
LinearRecurrence[{4, 4}, {1, 5, 25}, 30] (* Harvey P. Dale, Mar 25 2022 *)
PROG
(Magma) I:=[1, 5, 25]; [n le 3 select I[n] else 4*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 27 2012
(PARI) my(x='x+O('x^30)); Vec((1+x+x^2)/(1-4*x-4*x^2)) \\ G. C. Greubel, Aug 08 2019
(Sage)
def A123871_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x+x^2)/(1-4*x-4*x^2) ).list()
A123871_list(30) # G. C. Greubel, Aug 08 2019
(GAP) a:=[1, 5, 25];; for n in [4..30] do a[n]:=4*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Aug 08 2019
CROSSREFS
Column 5 in A265584.
Sequence in context: A089927 A269463 A068539 * A268453 A343801 A218989
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 20 2006
STATUS
approved