login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123512 Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively. 6
1, 10, 105, 1190, 14630, 194796, 2798670, 43204260, 713655855, 12564061510, 234896893231, 4648313235930, 97068707038940, 2133251854548920, 49215687006553740, 1189262114277026856, 30037396074996304365 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..439

FORMULA

E.g.f.: (1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4,-x/(1-x)).

From Vaclav Kotesovec, Nov 13 2017: (Start)

Recurrence: n*a(n) = 2*n*(n+4)*a(n-1) - (n-1)*(n+3)*(n+4)*a(n-2).

a(n) ~ exp(2*sqrt(n)-n-1/2) * n^(n + 17/4) / (3*2^(7/2)) * (1 + 31/(48*sqrt(n))).

(End)

MATHEMATICA

CoefficientList[ Series[(1/(1 - x)^5)*Exp[x/(1 - x)]LaguerreL[4, -x/(1 - x)], {x, 0, 16}], x]*Range[0, 16]! (* Robert G. Wilson v, Oct 03 2006 *)

PROG

(PARI)

LaguerreL(n, v='x) = {

  my(x='x+O('x^(n+1)), t='t);

  subst(polcoeff(exp(-x*t/(1-x))/(1-x), n), 't, v);

};

N=17; x='x+O('x^N); Vec(serlaplace((1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4, -x/(1-x)))) \\ Gheorghe Coserea, Oct 26 2017

CROSSREFS

Cf.: A002720, A052852, A123510, A123511.

Sequence in context: A233830 A046715 A145713 * A079515 A024131 A000457

Adjacent sequences:  A123509 A123510 A123511 * A123513 A123514 A123515

KEYWORD

nonn

AUTHOR

Karol A. Penson, Oct 02 2006

EXTENSIONS

a(0)=1 prepended by Gheorghe Coserea, Oct 26 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 05:01 EDT 2019. Contains 324229 sequences. (Running on oeis4.)