The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123512 Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively. 6
 1, 10, 105, 1190, 14630, 194796, 2798670, 43204260, 713655855, 12564061510, 234896893231, 4648313235930, 97068707038940, 2133251854548920, 49215687006553740, 1189262114277026856, 30037396074996304365 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..439 FORMULA E.g.f.: (1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4,-x/(1-x)). From Vaclav Kotesovec, Nov 13 2017: (Start) Recurrence: n*a(n) = 2*n*(n+4)*a(n-1) - (n-1)*(n+3)*(n+4)*a(n-2). a(n) ~ exp(2*sqrt(n)-n-1/2) * n^(n + 17/4) / (3*2^(7/2)) * (1 + 31/(48*sqrt(n))). (End) MATHEMATICA CoefficientList[ Series[(1/(1 - x)^5)*Exp[x/(1 - x)]LaguerreL[4, -x/(1 - x)], {x, 0, 16}], x]*Range[0, 16]! (* Robert G. Wilson v, Oct 03 2006 *) PROG (PARI) LaguerreL(n, v='x) = { my(x='x+O('x^(n+1)), t='t); subst(polcoeff(exp(-x*t/(1-x))/(1-x), n), 't, v); }; N=17; x='x+O('x^N); Vec(serlaplace((1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4, -x/(1-x)))) \\ Gheorghe Coserea, Oct 26 2017 CROSSREFS Cf.: A002720, A052852, A123510, A123511. Sequence in context: A233830 A046715 A145713 * A079515 A024131 A000457 Adjacent sequences: A123509 A123510 A123511 * A123513 A123514 A123515 KEYWORD nonn AUTHOR Karol A. Penson, Oct 02 2006 EXTENSIONS a(0)=1 prepended by Gheorghe Coserea, Oct 26 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 13:51 EST 2023. Contains 359923 sequences. (Running on oeis4.)