login
A120970
G.f. satisfies: A(x/A(x)^2) = 1 + x ; thus A(x) = 1 + Series_Reversion(x/A(x)^2).
8
1, 1, 2, 9, 60, 504, 4946, 54430, 655362, 8496454, 117311198, 1711459903, 26228829200, 420370445830, 7021029571856, 121859518887327, 2192820745899978, 40831103986939664, 785429260324068156, 15585831041632684997, 318649154587152781210
OFFSET
0,3
COMMENTS
From Paul D. Hanna, Nov 16 2008: (Start)
More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then
A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x);
thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1. (End)
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x*A(A(x) - 1)^2.
Let B(x) be the g.f. of A120971, then B(x) and g.f. A(x) are related by:
(a) B(x) = A(A(x)-1),
(b) B(x) = A(x*B(x)^2),
(c) A(x) = B(x/A(x)^2),
(d) A(x) = 1 + x*B(x)^2,
(e) B(x) = 1 + x*B(x)^2*B(A(x)-1)^2,
(f) A(B(x)-1) = B(A(x)-1) = B(x*B(x)^2).
a(n) = [x^(n-1)] (1/n)*A(x)^(2n) for n>=1 with a(0)=1; i.e., a(n) equals 1/n times the coefficient of x^(n-1) in A(x)^(2n) for n>=1. [Paul D. Hanna, Nov 16 2008]
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 60*x^4 + 504*x^5 + 4946*x^6 + ...
Related expansions.
A(x)^2 = 1 + 2*x + 5*x^2 + 22*x^3 + 142*x^4 + 1164*x^5 + 11221*x^6 + ...
A(A(x)-1) = 1 + x + 4*x^2 + 26*x^3 + 218*x^4 + 2151*x^5 + 23854*x^6 + ...
A(A(x)-1)^2 = 1 + 2*x + 9*x^2 + 60*x^3 + 504*x^4 + 4946*x^5 + ...
x/A(x)^2 = x - 2*x^2 - x^3 - 10*x^4 - 73*x^5 - 662*x^6 - 6842*x^7 - ...
Series_Reversion(x/A(x)^2) = x + 2*x^2 + 9*x^3 + 60*x^4 + 504*x^5 + 4946*x^6 + ...
To illustrate the formula a(n) = [x^(n-1)] 2*A(x)^(2*n)/(2*n),
form a table of coefficients in A(x)^(2*n) as follows:
A^2: [(1), 2, 5, 22, 142, 1164, 11221, 121848, ...];
A^4: [1, (4), 14, 64, 397, 3116, 29002, 306468, ...];
A^6: [1, 6, (27), 134, 825, 6270, 56492, 580902, ...];
A^8: [1, 8, 44, (240), 1502, 11200, 98144, 983016, ...];
A^10: [1, 10, 65, 390, (2520), 18672, 160115, 1565260, ...];
A^12: [1, 12, 90, 592, 3987, (29676), 250730, 2399388, ...];
A^14: [1, 14, 119, 854, 6027, 45458, (381010), 3582266, ...]; ...
in which the main diagonal forms the initial terms of this sequence:
[2/2*(1), 2/4*(4), 2/6*(27), 2/8*(240), 2/10*(2520), 2/12*(29676), ...].
MATHEMATICA
terms = 21; A[_] = 1; Do[A[x_] = 1 + x*A[A[x] - 1]^2 + O[x]^j // Normal, {j, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[ #A]=-Vec(subst(Ser(A), x, x/Ser(A)^2))[ #A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* This sequence is generated when k=2, m=0: A(x/A(x)^k) = 1 + x*A(x)^m */ {a(n, k=2, m=0)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))} \\ Paul D. Hanna, Nov 16 2008
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. related variants: A145347, A145348, A147664, A145349, A145350. - Paul D. Hanna, Nov 16 2008
Sequence in context: A354314 A354496 A357683 * A339360 A111558 A322943
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 20 2006
STATUS
approved