login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030266 Shifts left under COMPOSE transform with itself. 39
0, 1, 1, 2, 6, 23, 104, 531, 2982, 18109, 117545, 808764, 5862253, 44553224, 353713232, 2924697019, 25124481690, 223768976093, 2062614190733, 19646231085928, 193102738376890, 1956191484175505, 20401540100814142, 218825717967033373, 2411606083999341827 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..220

David Callan, A Combinatorial Interpretation of the Eigensequence for Composition, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.

David Callan, Lagrange Inversion Counts 3bar-5241-Avoiding Permutations, J. Int. Seq. 14 (2011) # 11.9.4.

N. J. A. Sloane, Transforms

FORMULA

G.f. A(x) satisfies the functional equation: A(x)-x = x*A(A(x)). - Paul D. Hanna, Aug 04 2002

G.f.: A(x/(1+A(x))) = x. - Paul D. Hanna, Dec 04 2003

Suppose the functions A=A(x), B=B(x), C=C(x), etc., satisfy: A = 1 + xAB, B = 1 + xABC, C = 1 + xABCD, D = 1 + xABCDE, etc., then B(x)=A(x*A(x)), C(x)=B(x*A(x)), D(x)=C(x*A(x)), etc., where A(x) = 1 + x*A(x)*A(x*A(x)) and x*A(x) is the g.f. of this sequence (see table A128325). - Paul D. Hanna, Mar 10 2007

G.f. A(x) = x*F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n+1)) for n>0 with F(x,0)=1. - Paul D. Hanna, Apr 16 2007

a(n) = [x^(n-1)] [1 + A(x)]^n/n for n>=1 with a(0)=0; i.e., a(n) equals the coefficient of x^(n-1) in [1+A(x)]^n/n for n >= 1. - Paul D. Hanna, Nov 18 2008

From Paul D. Hanna, Jul 09 2009: (Start)

Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then

a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,k).

(End)

G.f. satisfies:

* A(x) = x*exp( Sum_{m>=0} {d^m/dx^m A(x)^(m+1)/x} * x^(m+1)/(m+1)! );

* A(x) = x*exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^m/y^m}*x^k]*x^m/m );

which are equivalent. - Paul D. Hanna, Dec 15 2010

The g.f. satisfies:

log(A(x)/x) = A(x) + {d/dx A(x)^2/x}*x^2/2! + {d^2/dx^2 A(x)^3/x}*x^3/3! + {d^3/dx^3 A(x)^4/x}*x^4/4! + ... - Paul D. Hanna, Dec 15 2010

EXAMPLE

G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 23*x^5 + 104*x^6 + ...

A(A(x)) = x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 531*x^6 + ...

MAPLE

A:= proc(n) option remember;

      unapply(`if`(n=0, x,

      A(n-1)(x)+coeff(A(n-1)(A(n-1)(x)), x, n) *x^(n+1)), x)

    end:

a:= n-> coeff(A(n)(x), x, n):

seq(a(n), n=0..20);  # Alois P. Heinz, Feb 24 2012

MATHEMATICA

A[0] = Identity; A[n_] := A[n] = Function[x, Evaluate[A[n-1][x]+Coefficient[A[n-1][A[n-1][x]], x, n]*x^(n+1)]]; a[n_] := Coefficient[A[n][x], x, n]; Table[a[n], {n, 0, 22}] (* Jean-Fran├žois Alcover, Feb 17 2014, after Alois P. Heinz *)

PROG

(PARI) {a(n)=local(A=1+x); for(i=0, n, A=1+x*A*subst(A, x, x*A+x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Mar 10 2007

(PARI) {a(n)=local(A=sum(i=1, n-1, a(i)*x^i)+x*O(x^n)); if(n==0, 0, polcoeff((1+A)^n/n, n-1))} \\ Paul D. Hanna, Nov 18 2008

(PARI) {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, k))))} \\ Paul D. Hanna, Jul 09 2009

(PARI) {a(n)=local(A=1+sum(i=1, n-1, a(i)*x^i+x*O(x^n)));

for(i=1, n, A=exp(sum(m=1, n, sum(k=0, n-m, binomial(m+k-1, k)*polcoeff(A^(2*m), k)*x^k)*x^m/m)+x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 15 2010

CROSSREFS

Cf. A001028, A035049.

Cf. A110447.

Cf. A128325, A121687.

Sequence in context: A137534 A137535 A110447 * A137536 A137537 A137538

Adjacent sequences:  A030263 A030264 A030265 * A030267 A030268 A030269

KEYWORD

nonn,nice,eigen

AUTHOR

Christian G. Bower

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 05:43 EDT 2019. Contains 325168 sequences. (Running on oeis4.)