login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145348 G.f. satisfies: A(x/A(x)^2) = 1 + x*A(x)^2. 5
1, 1, 4, 30, 312, 3965, 57824, 933998, 16346728, 305539046, 6037780164, 125227212342, 2711254371568, 61021656441091, 1423063422363676, 34297379607790288, 852463916004336464, 21812807282389353798 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then

A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x);

thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..230

FORMULA

G.f.: A(x) = 1 + x*G(x)^4 where G(x) = A(x*G(x)^2) and A(x) = G(x/A(x)^2).

a(n) = [x^(n-1)] 2*A(x)^(2*n+2)/(n+1) for n>=1 with a(0)=1; i.e., a(n) equals the coefficient of x^(n-1) in 2*A(x)^(2*n+2)/(n+1) for n>=1 (see comment).

EXAMPLE

G.f.: A(x) = 1 + x + 4*x^2 + 30*x^3 + 312*x^4 + 3965*x^5 +...

A(x)^2 = 1 + 2*x + 9*x^2 + 68*x^3 + 700*x^4 + 8794*x^5 + 126974*x^6+..

A(x/A(x)^2) = 1 + x + 2*x^2 + 9*x^3 + 68*x^4 + 700*x^5 + 8794*x^6 +...

A(x) = 1 + x*G(x)^4 where G(x) = A(x*G(x)^2):

G(x) = 1 + x + 6*x^2 + 59*x^3 + 742*x^4 + 10877*x^5 + 177612*x^6 +...

G(x)^2 = 1 + 2*x + 13*x^2 + 130*x^3 + 1638*x^4 + 23946*x^5 +...

To illustrate the formula a(n) = [x^(n-1)] 2*A(x)^(2*n+2)/(n+1),

form a table of coefficients in A(x)^(2*n+2) as follows:

A^4: [(1), 4, 22, 172, 1753, 21612, 306348, ...];

A^6: [1, (6), 39, 320, 3267, 39756, 554595, ...];

A^8: [1, 8, (60), 520, 5366, 64816, 892308, ...];

A^10: [1, 10, 85, (780), 8190, 98702, 1344920,  ...];

A^12: [1, 12, 114, 1108, (11895), 143676, 1943488, ...];

A^14: [1, 14, 147, 1512, 16653, (202384), 2725541, ...]; ...

in which the main diagonal forms the initial terms of this sequence:

[2/2*(1), 2/3*(6), 2/4*(60), 2/5*(780), 2/6*(11895), 2/7*(202384), ...].

PROG

(PARI) {a(n)=local(F=1+x, G); for(i=0, n, G=serreverse(x/(F+x*O(x^n))^2)/x; F=1+x*G^2); polcoeff(F, n)}

(PARI) /* This sequence is generated when k=2, m=2: A(x/A(x)^k) = 1 + x*A(x)^m */

{a(n, k=2, m=2)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)+x*O(x^n)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A145350, A147664, A120972.

Sequence in context: A052452 A088794 A239841 * A052574 A158834 A139086

Adjacent sequences:  A145345 A145346 A145347 * A145349 A145350 A145351

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 04:43 EST 2016. Contains 278960 sequences.