login
A120379
Number of partitions of the Catalan number binomial(2n,n)/(n+1).
1
1, 1, 2, 7, 135, 53174, 6620830889, 39020148000237259665, 133523474368721196662101633251149823925, 14042421942608880253531745690954970851431472263832971258973477309202081861
OFFSET
0,3
EXAMPLE
a(3)=7 because binomial(6,3)/4 = 5 and the number of partitions of 5 is 7.
MAPLE
with(combinat): seq(numbpart(binomial(2*n, n)/(n+1)), n=0..8); # Emeric Deutsch, Jul 23 2006
MATHEMATICA
Array[PartitionsP@ CatalanNumber@ # &, 10, 0] (* Michael De Vlieger, Dec 17 2017 *)
PROG
(MuPAD) combinat::partitions::count(binomial(2*n, n)/(n+1)) $n=0..10 // Zerinvary Lajos, Apr 16 2007
CROSSREFS
Sequence in context: A323597 A286423 A041727 * A101799 A201172 A062617
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, Jun 28 2006
EXTENSIONS
Edited by Emeric Deutsch, Jul 23 2006
STATUS
approved