login
A120381
Number of partitions of Bell(n).
1
1, 1, 2, 7, 176, 281589, 5134205287973, 158606118553696417431847045996, 16514030227448471632774408193106540249556159974371768498637396492292
OFFSET
0,3
EXAMPLE
a(3)=7 because the third Bell number is 5 and the number of partitions of 5 is 7.
MAPLE
with(combinat): a:=n->numbpart(bell(n)): seq(a(n), n=0..7);
MATHEMATICA
Table[PartitionsP[BellB[n]], {n, 0, 8}] (* Amiram Eldar, Nov 23 2019 *)
CROSSREFS
Sequence in context: A236810 A159034 A336249 * A260507 A173240 A042359
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, Jun 29 2006
EXTENSIONS
Edited by Emeric Deutsch and N. J. A. Sloane, Jul 23 2006
STATUS
approved