The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118932 E.g.f.: A(x) = exp( Sum_{n>=0} x^(3^n)/3^((3^n-1)/2) ). 4
 1, 1, 1, 3, 9, 21, 81, 351, 1233, 10249, 75841, 388411, 3733401, 33702813, 215375889, 1984583511, 19181083041, 141963117201, 1797976123393, 22534941675379, 202605151063081, 2992764505338021, 43182110678814801, 445326641624332623 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Equals invariant column vector V that satisfies matrix product A118931*V = V, where A118931(n,k) = n!/[k!(n-3k)!*3^k] for n>=3*k>=0; thus a(n) = Sum_{k=0..[n/3]} A118931(n,k)*a(k), with a(0)=1. LINKS FORMULA a(n) = Sum_{k=0..[n/3]} n!/[k!*(n-3*k)!*3^k] * a(k), with a(0)=1. EXAMPLE E.g.f. A(x) = exp( x + x^3/3 + x^9/3^4 + x^27/3^13 + x^81/3^40 +...) = 1 + 1*x + 1*x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5!+ 81*x^6/6!+... PROG (PARI) {a(n) = if(n==0, 1, sum(k=0, n\3, n!/(k!*(n-3*k)!*3^k)*a(k)))} for(n=0, 30, print1(a(n), ", ")) (PARI) /* Defined by E.G.F.: */ {a(n) = n!*polcoeff( exp(sum(k=0, ceil(log(n+1)/log(3)), x^(3^k)/3^((3^k-1)/2))+x*O(x^n)), n, x)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A118931; variants: A118930, A118935. Sequence in context: A236856 A318843 A001470 * A053499 A218003 A146909 Adjacent sequences:  A118929 A118930 A118931 * A118933 A118934 A118935 KEYWORD nonn AUTHOR Paul D. Hanna, May 06 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 07:29 EDT 2020. Contains 334584 sequences. (Running on oeis4.)