The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118931 Triangle, read by rows, where T(n,k) = n!/[k!*(n-3*k)!*3^k)] for n>=3*k>=0. 3
 1, 1, 1, 1, 2, 1, 8, 1, 20, 1, 40, 40, 1, 70, 280, 1, 112, 1120, 1, 168, 3360, 2240, 1, 240, 8400, 22400, 1, 330, 18480, 123200, 1, 440, 36960, 492800, 246400, 1, 572, 68640, 1601600, 3203200, 1, 728, 120120, 4484480, 22422400, 1, 910, 200200, 11211200 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row n contains 1+floor(n/3) terms. Row sums yield A001470. Given column vector V = A118932, then V is invariant under matrix product T*V = V, or, A118932(n) = Sum_{k=0..n} T(n,k)*A118932(k). Given C = Pascal's triangle and T = this triangle, then matrix product M = C^-1*T yields M(3n,n) = (3*n)!/(n!*3^n), 0 otherwise (cf. A100861 formula due to Paul Barry). LINKS FORMULA E.g.f.: A(x,y) = exp(x + y*x^3/3). EXAMPLE Triangle T begins: 1; 1; 1; 1,2; 1,8; 1,20; 1,40,40; 1,70,280; 1,112,1120; 1,168,3360,2240; 1,240,8400,22400; 1,330,18480,123200; 1,440,36960,492800,246400; ... PROG (PARI) T(n, k)=if(n<3*k, 0, n!/(k!*(n-3*k)!*3^k)) CROSSREFS Cf. A001470 (row sums), A118932 (invariant vector); variants: A100861, A118933. Sequence in context: A008308 A176889 A208753 * A101280 A321280 A008309 Adjacent sequences:  A118928 A118929 A118930 * A118932 A118933 A118934 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, May 06 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 7 00:02 EDT 2020. Contains 334836 sequences. (Running on oeis4.)