login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115974 Number of Feynman diagrams (vanishing and non-vanishing) of order 2n for the proper self-energy function of quantum electrodynamics (QED). 7
1, 2, 6, 42, 414, 5058, 72486, 1182762, 21573054, 434358018, 9565348806, 228740050602, 5904853053534, 163728751178178, 4855046674314726, 153367360732387242, 5143219420761900414, 182530741698302811138, 6835913695777897799046, 269455018264860747728682, 11152465473005099074500894, 483617145128737549802831298 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The number of diagrams of A000698 left if the connected improper diagrams are removed: a(n)<=A000698(n+1). G.f. is essentially the inversion of the G.f. of A000698.

From Groux Roland, Mar 22 2011: (Start)

a(n) is the INVERTi transform of A001147(n+2), starting at n=2.

Let rho(x)=sqrt(x)*exp(-x/2)/sqrt(2*Pi); s(x)=integral(rho'(t)*log(abs(1-t/x)),t=0..infinity), and mu(x)=rho(x)/((s(x))^2+Pi^2*(rho(x))^2), then a(n+1) is the moment of order n for the measure of density mu(x) over the interval 0..infinity.

(End)

From Robert Coquereaux, Sep 14 2014: (Start)

Vanishing diagrams: QED diagrams containing electron loops with an odd number of vertices are set to 0 (Furry theorem). See comments in A000698. This sequence (which is twice A167872) counts all the diagrams (vanishing and non-vanishing) for the self-energy function of QED. The sequence A005412 gives the number of non-vanishing diagrams for the self-energy. - Robert Coquereaux, Sep 12 2014

REFERENCES

A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..400

P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D 18 (1978), 1939-1949.

R. J. Mathar, Table of Third and Fourth Order Feynman Diagrams of the Interacting Fermion Green's Function, Int. J. Quantum. Chem. 107 (10) (2007) 1975-1984.

Adrian Ocneanu, On the inner structure of a permutation: bicolored partitions and Eulerians, trees and primitives; arXiv preprint arXiv:1304.1263 [math.CO], 2013.

Wikipedia, Feynman diagram

FORMULA

a(n) = A000698(n+1)-sum(m=1..n-1, a(m)*A000698(n+1-m) ).

1-sum(n>=1, a(n)*x^n ) = 1/(1+sum(n>=1, A000698(n+1)*x^n ) (G.f.)

G.f. (1-Q(0))/x where Q(k)= 1 - (k+2)*x/Q(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Aug 20 2012

G.f. 1/x - 1 - 1/(Q(0)-1) where Q(k)= 1 + (4*k+1)*x/(1 - (4*k+3)*x/((4*k+3)*x + 1/Q(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 12 2012

G.f.: 1/x + 1/(G(0)-1) where G(k)= 1 - x*(k+1)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 10 2012

G.f.: A(x) = (1 - (G(0))/x where G(k) =  1 + (2*k+1)*x - x*(2*k+3)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 26 2012

G.f.: 1/x - 1 - Q(0)/x, where Q(k)= 1 - x*(2*k+3)/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 21 2013

Call Sf the G.f. for the sequence 1, 2, 10, 74, ..., i.e., A000698 with first term (equal to 1) dropped. Call Sigmaf the G.f. for the sequence 0, 2, 6, 42, ..., i.e., this sequence A115974 with a first term of order 0 (equal to 0) added. Then Sf = 1/(1-Sigmaf). - Robert Coquereaux, Sep 14 2014

EXAMPLE

There are A000698(3)=10 self-energy diagrams of order 4, (n=2). Four of them are chained diagrams of order 2, (n=1) (of two kinds) which are simply connected, which leaves 10-4=6=a(2) proper diagrams.

MAPLE

A000698 := proc(n::integer) local resul, fac, pows, c, c1, p, i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p, pows)) ; c1 := op(1, c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i, c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end:

A115974 := proc(n::integer) local resul, m ; resul := A000698(n+1) ; for m from 1 to n-1 do resul := resul-A115974(m)*A000698(n+1-m) ; od: RETURN(resul) ; end:

for n from 1 to 20 do printf("%a, ", A115974(n)) ; od ; # R. J. Mathar, Apr 24 2006

MATHEMATICA

(* b = A000698 *) b[n_] := b[n] = (2n-1)!! - Sum[b[n-k]*(2k-1)!!, {k, n-1}]; a[0] = 1; a[n_] := a[n] = b[n+1] - Sum[a[m]*b[n+1-m], {m, n-1}]; Array[a, 22, 0] (* Jean-Fran├žois Alcover, Jul 10 2017 *)

CROSSREFS

Cf. A000698, A005411, A005412, A167872.

Sequence in context: A227250 A258969 A161632 * A179330 A066864 A181737

Adjacent sequences:  A115971 A115972 A115973 * A115975 A115976 A115977

KEYWORD

nonn

AUTHOR

R. J. Mathar, Mar 15 2006

EXTENSIONS

More terms from R. J. Mathar, Apr 24 2006, Nov 07 2006

Name and definition clarified by Robert Coquereaux, Sep 14 2014

a(0)=1 prepended by Alois P. Heinz, Jun 22 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 01:06 EST 2018. Contains 299357 sequences. (Running on oeis4.)