login
A258969
E.g.f.: A'(x) = 1 + A(x)^3, with A(0)=1.
7
1, 2, 6, 42, 390, 4698, 69174, 1203498, 24163110, 549811962, 13982486166, 393026414922, 12099527531910, 404881353252378, 14632253175107574, 567974815524008298, 23567351945550373350, 1040985881615266375482, 48767788927611416600406, 2415210691383917131432842
OFFSET
0,2
COMMENTS
Conjecture: A227250(n+1) = a(n).
LINKS
FORMULA
a(n) ~ (3/(Pi/sqrt(3)-log(2)))^(n+1/2) * n^n / exp(n).
E.g.f.: 1 + Series_Reversion( Integral 1/((2+x)*(1+x+x^2)) dx ). - Paul D. Hanna, Jun 16 2015
EXAMPLE
A(x) = 1 + 2*x + 6*x^2/2! + 42*x^3/3! + 390*x^4/4! + 4698*x^5/5! + ...
A'(x) = 2 + 6*x + 21*x^2 + 65*x^3 + 783*x^4/4 + 11529*x^5/20 + ...
1 + A(x)^3 = 2 + 6*x + 21*x^2 + 65*x^3 + 783*x^4/4 + 11529*x^5/20 + ...
MATHEMATICA
nmax=20; Subscript[a, 0]=1; egf=Sum[Subscript[a, k]*x^k, {k, 0, nmax+1}]; Table[Subscript[a, k]*k!, {k, 0, nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^3-D[egf, x]], x], nmax]==ConstantArray[0, nmax]][[1]]
PROG
(PARI) {a(n) = local(A=1); A = 1 + serreverse( intformal( 1/((2+x)*(1+x+x^2) +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2015
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 15 2015
STATUS
approved