login
A115264
Diagonal sums of correlation triangle for floor((n+2)/2).
7
1, 1, 3, 4, 8, 10, 17, 21, 32, 39, 55, 66, 89, 105, 136, 159, 200, 231, 284, 325, 392, 445, 528, 595, 697, 780, 903, 1005, 1152, 1275, 1449, 1596, 1800, 1974, 2211, 2415, 2689, 2926, 3240, 3514, 3872, 4186, 4592, 4950, 5408, 5814, 6328, 6786, 7361
OFFSET
0,3
COMMENTS
Diagonal sums of A115263.
This is associated with the root system F4, and can be described using the additive function on the affine F4 diagram:
2--4--3--2--1
LINKS
FORMULA
G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^4)).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} [j<=k]*floor((k-j+2)/2)*[j<=n-2k]*floor((n-2k-j+2)/2).
a(n) = A099837(n+3)/27 + A056594(n)/16 + (-1)^n*(2*n^2 +24*n +63)/256 +(6*n^4 +144*n^3 +1194*n^2 +3960*n +4267)/6912 . - R. J. Mathar, Mar 19 2012
MAPLE
seq(coeff(series(1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Jan 13 2020
MATHEMATICA
CoefficientList[Series[1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^4)), {x, 0, 50}], x] (* G. C. Greubel, Jan 13 2020 *)
PROG
(Sage) x=PowerSeriesRing(QQ, 'x').gen(); 1/((1-x)*(1-x**2)**2*(1-x**3)*(1-x**4))
(Maxima) A115264(n) := block( A099837(n+3)/27 + A056594(n)/16+(-1)^n*(2*n^2+24*n+63)/256 +(6*n^4 +144*n^3+1194*n^2+3960*n+4267)/6912 )$ /* R. J. Mathar, Mar 19 2012 */
(PARI) my(x='x+O('x^50)); Vec(1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^4))) \\ G. C. Greubel, Jan 13 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 0); Coefficients(R!( 1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Jan 13 2020
CROSSREFS
For G2, the corresponding sequence is A001399.
For E6, the corresponding sequence is A164680.
For E7, the corresponding sequence is A210068.
For E8, the corresponding sequence is A045513.
See A210631 for a very similar sequence.
Sequence in context: A165272 A310010 A294085 * A210631 A212543 A355193
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 18 2006
STATUS
approved