login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294085
a(n) is the number of self-symmetric anonymous and neutral equivalence classes of preference profiles with 3 alternatives and n agents (IANC model).
1
1, 1, 3, 4, 8, 10, 17, 20, 30, 35, 49, 56, 75, 84, 108, 120, 150, 165, 202, 220, 264, 286, 338, 364, 425, 455, 525, 560, 640, 680, 771, 816, 918, 969, 1083, 1140, 1267, 1330, 1470, 1540, 1694, 1771, 1940, 2024, 2208, 2300, 2500, 2600, 2817, 2925, 3159, 3276, 3528, 3654, 3925
OFFSET
0,3
LINKS
A. Karpov, An Informational Basis for Voting Rules, NRU Higher School of Economics. Series WP BRP "Economics/EC". 2018. No. 188
FORMULA
a(n) = 2*A005513(n-6) - A037240(n).
If n is odd, a(n) = (n+5)*(n+3)*(n+1)/48;
If n is even, a(n) = ceiling((n+4)^2*(n+2)/48).
From Colin Barker, May 11 2018: (Start)
G.f.: (1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-7) - 2*a(n-8) + 2*a(n-9) + a(n-10) - a(n-11) for n>10.
(End)
PROG
(PARI) Vec((1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, May 11 2018
CROSSREFS
For odd n, it is A000292.
Sequence in context: A005232 A165272 A310010 * A115264 A210631 A212543
KEYWORD
nonn,easy
AUTHOR
Alexander Karpov, Apr 12 2018
STATUS
approved