OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
A. Karpov, An Informational Basis for Voting Rules, NRU Higher School of Economics. Series WP BRP "Economics/EC". 2018. No. 188
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1,1,-1,-2,2,1,-1).
FORMULA
If n is odd, a(n) = (n+5)*(n+3)*(n+1)/48;
If n is even, a(n) = ceiling((n+4)^2*(n+2)/48).
From Colin Barker, May 11 2018: (Start)
G.f.: (1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-7) - 2*a(n-8) + 2*a(n-9) + a(n-10) - a(n-11) for n>10.
(End)
PROG
(PARI) Vec((1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, May 11 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexander Karpov, Apr 12 2018
STATUS
approved