login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115164 a(n) = 3*a(n-1) + 4*a(n-2), with a(0) = 3, a(1) = 7, a(3) = 9, for n > 2. 3
3, 7, 9, 55, 201, 823, 3273, 13111, 52425, 209719, 838857, 3355447, 13421769, 53687095, 214748361, 858993463, 3435973833, 13743895351, 54975581385, 219902325559, 879609302217, 3518437208887, 14073748835529, 56294995342135 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,4).

FORMULA

From Colin Barker, Oct 31 2012: (Start)

a(n) = (4^(1 + n) - 19*(-1)^n)/5 for n > 0.

a(n) = 3*a(n-1) + 4*a(n-2) for n > 2.

G.f.: (24*x^2 + 2*x - 3)/((x + 1)*(4*x - 1)). (End)

From Franck Maminirina Ramaharo, Nov 23 2018: (Start)

a(n) = A115113(n) + A165326(n).

E.g.f.: (30 - 19*exp(-x) + 4*exp(4*x))/5. (End)

MATHEMATICA

Join[{3}, LinearRecurrence[{3, 4}, {7, 9}, 50]]

PROG

(Maxima) (a[0] : 3, a[1] : 7, a[2] : 9, a[n] := 3*a[n-1] + 4*a[n-2], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 23 2018 */

(PARI) vector(50, n, n--; if(n==0, 3, (4^(1+n) -19*(-1)^n)/5)) \\ G. C. Greubel, Nov 23 2018

(MAGMA) [3] cat [(4^(1+n) -19*(-1)^n)/5: n in [1..50]]; // G. C. Greubel, Nov 23 2018

(Sage) [3] + [(4^(1+n) -19*(-1)^n)/5 for n in (1..50)] # G. C. Greubel, Nov 23 2018

CROSSREFS

Cf. A115113, A115335.

Sequence in context: A128052 A033681 A074339 * A088801 A003033 A193945

Adjacent sequences:  A115161 A115162 A115163 * A115165 A115166 A115167

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, Mar 06 2006

EXTENSIONS

Edited, and new name from Franck Maminirina Ramaharo, Nov 23 2018, after Colin Barker

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 11:11 EDT 2019. Contains 324219 sequences. (Running on oeis4.)