login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088801
Numerators of coefficients of powers of n^(-1) in the Romanovsky series expansion of the mean of the standard deviation from a normal population.
1
1, -3, -7, -9, 59, 483, -2323, -42801, 923923, 30055311, -170042041, -8639161167, 99976667055, 7336972779615, -42962450319915, -4309733345367105, 203289825295660035, 26751125064470578695, -158415664732997134045, -26488943422458070446915
OFFSET
0,2
COMMENTS
Asymptotic expansion of Gamma(N/2) / Gamma((N-1)/2) = (N/2)^(1/2) * (c(0) + c(1)/N + c(2)/N^2 + ... ). a(n) = numerator(c(n)). - Michael Somos, Aug 23 2007
LINKS
Eric Weisstein's World of Mathematics, Standard Deviation Distribution
EXAMPLE
b(N) = 1 - 3/(4N) - 7/(32N^2) - 9/(128N^3) + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, Module[{A = 1}, Do[ A += x^k / (4 k) SeriesCoefficient[ (A /. x -> x / (1 + 2 x))^2 - (A/(1 - x))^2 / (1 + 2 x) + O[x]^(k + 2), k + 1], {k, n}]; Numerator@Coefficient[A, x, n]]]; (* Michael Somos, May 24 2015 *)
PROG
(PARI) {a(n) = my(A); if(n < 0, 0, A = 1 + O(x) ; for( k = 1, n, A = truncate(A) + x^2 * O(x^k); A += x^k/4/k * polcoeff( subst( A, x, x/(1+2*x))^2 - A^2/(1-x)^2/(1+2*x), k+1 ) ); numerator( polcoeff( A, n ) ) ) }; /* Michael Somos, Aug 23 2007 */
CROSSREFS
Cf. A088802.
Sequence in context: A074339 A355732 A115164 * A003033 A193945 A087147
KEYWORD
sign,frac
AUTHOR
Eric W. Weisstein, Oct 16 2003
EXTENSIONS
a
STATUS
approved