login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115113 a(n) = 3*a(n-1) + 4*a(n-2), with a(0) = 2, a(1) = 6. 3
2, 6, 10, 54, 202, 822, 3274, 13110, 52426, 209718, 838858, 3355446, 13421770, 53687094, 214748362, 858993462, 3435973834, 13743895350, 54975581386, 219902325558, 879609302218, 3518437208886, 14073748835530, 56294995342134 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,4).

FORMULA

From Colin Barker, Nov 13 2012: (Start)

a(n) = (-2*(7*(-1)^n - 2^(1 + 2*n)))/5 for n > 0.

a(n) = 3*a(n-1) + 4*a(n-2) for n > 2.

G.f.: 2*(8*x^2 - 1)/((x + 1)*(4*x - 1)). (End)

E.g.f.: (20 - 14*exp(-x) + 4*exp(4*x))/5. - Franck Maminirina Ramaharo, Nov 23 2018

MATHEMATICA

Join[{2}, LinearRecurrence[{3, 4}, {6, 10}, 50]]

PROG

(Maxima) (a[0] : 2, a[1] : 6, a[2] : 10, a[n] := 3*a[n-1] + 4*a[n-2], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 23 2018 */

(PARI) x='x+O('x^50); Vec(2*(8*x^2-1)/((x+1)*(4*x-1))) \\ G. C. Greubel, Nov 23 2018

(MAGMA) I:=[6, 10]; [2] cat [n le 2 select I[n] else 3*Self(n-1) + 4*Self(n-2): n in [1..49]]; // G. C. Greubel, Nov 23 2018

(Sage) s=(2*(8*x^2-1)/((x+1)*(4*x-1))).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 23 2018

CROSSREFS

Cf. A115164, A115335.

Sequence in context: A083524 A222559 A095107 * A163788 A324547 A093880

Adjacent sequences:  A115110 A115111 A115112 * A115114 A115115 A115116

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, Mar 06 2006

EXTENSIONS

Edited, and new name from Franck Maminirina Ramaharo, Nov 23 2018, after Colin Barker's formula

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 22:17 EDT 2019. Contains 324200 sequences. (Running on oeis4.)