This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115113 a(n) = 3*a(n-1) + 4*a(n-2), with a(0) = 2, a(1) = 6. 3
 2, 6, 10, 54, 202, 822, 3274, 13110, 52426, 209718, 838858, 3355446, 13421770, 53687094, 214748362, 858993462, 3435973834, 13743895350, 54975581386, 219902325558, 879609302218, 3518437208886, 14073748835530, 56294995342134 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,4). FORMULA From Colin Barker, Nov 13 2012: (Start) a(n) = (-2*(7*(-1)^n - 2^(1 + 2*n)))/5 for n > 0. a(n) = 3*a(n-1) + 4*a(n-2) for n > 2. G.f.: 2*(8*x^2 - 1)/((x + 1)*(4*x - 1)). (End) E.g.f.: (20 - 14*exp(-x) + 4*exp(4*x))/5. - Franck Maminirina Ramaharo, Nov 23 2018 MATHEMATICA Join[{2}, LinearRecurrence[{3, 4}, {6, 10}, 50]] PROG (Maxima) (a[0] : 2, a[1] : 6, a[2] : 10, a[n] := 3*a[n-1] + 4*a[n-2], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 23 2018 */ (PARI) x='x+O('x^50); Vec(2*(8*x^2-1)/((x+1)*(4*x-1))) \\ G. C. Greubel, Nov 23 2018 (MAGMA) I:=[6, 10]; [2] cat [n le 2 select I[n] else 3*Self(n-1) + 4*Self(n-2): n in [1..49]]; // G. C. Greubel, Nov 23 2018 (Sage) s=(2*(8*x^2-1)/((x+1)*(4*x-1))).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 23 2018 CROSSREFS Cf. A115164, A115335. Sequence in context: A083524 A222559 A095107 * A163788 A324547 A093880 Adjacent sequences:  A115110 A115111 A115112 * A115114 A115115 A115116 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Mar 06 2006 EXTENSIONS Edited, and new name from Franck Maminirina Ramaharo, Nov 23 2018, after Colin Barker's formula STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 22:17 EDT 2019. Contains 324200 sequences. (Running on oeis4.)