login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115131
Waring numbers for power sums functions in terms of elementary symmetric functions; irregular triangle T(n,k), read by rows, for n >= 1 and 1 <= k <= A000041(n).
16
1, -2, 1, 3, -3, 1, -4, 4, 2, -4, 1, 5, -5, -5, 5, 5, -5, 1, -6, 6, 6, 3, -6, -12, -2, 6, 9, -6, 1, 7, -7, -7, -7, 7, 14, 7, 7, -7, -21, -7, 7, 14, -7, 1, -8, 8, 8, 8, 4, -8, -16, -16, -8, -8, 8, 24, 12, 24, 2, -8, -32, -16, 8, 20, -8, 1, 9, -9, -9, -9, -9, 9, 18, 18, 9, 9, 18, 3, -9, -27, -27, -27, -27, -9, 9, 36, 18, 54, 9, -9, -45, -30, 9, 27, -9, 1
OFFSET
1,2
COMMENTS
N*t^{(N)}_n(sigma_1, ..., sigma_N):= sum((x_k)^n, k=1..N) with the elementary symmetric function sigma_k (superscript (N) omitted) in terms of the indeterminates x_1,...,x_N, is an N-variable generalization of Chebyshev's polynomials C_n((sigma_1)/2) = t^{(N=2)}_n(sigma_1, sigma_2 = 1). In general, C_n^{(N)}(sigma_1, ..., sigma_{N-1}) := t^{(N)}_n(sigma_1, ..., sigma_{N-1}, sigma_N:=1). If n > N, one puts sigma_{N+1} = 0, ..., sigma_n = 0.
The sequence of row lengths of this array is A000041(n) (partition numbers).
In row n, this triangular array uses partitions of n listed in the Abramowitz-Stegun order (compare with the M_0, M_1, M_2 and M_3 numbers given in A048996 = |A111786|, A036038, A036039 and A036040, resp.).
Row sums give (-1)^(n-1). Unsigned row sums give A000225(n)= 2^n - 1.
N*t^{(N)}_n(sigma_1, ..., sigma_N) gives the sum of the n-th power of the indeterminates x_1, ... , x_N in terms of the elementary symmetric functions of these indeterminates. The coefficient T(n, k) of this partition array corresponds to the k-th partition of n in the Abramowitz-Stegun order, and it multiplies the product of sigma_j functions encoded by this partition. See the example for n = 4 below. - Wolfdieter Lang, Mar 09 2015
REFERENCES
P. A. MacMahon, Combinatory Analysis, 2 vols., Chelsea, NY, 1960, see p. 5 (with a_k -> sigma_k).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972; see pp. 831-832. [alternative scanned copy].
Wolfdieter Lang, On sums of powers of zeros of polynomials, J. Comp. Appl. Math. 89 (1998) 237-256; see Theorem 1.
Wolfdieter Lang, First 10 rows of the array.
R. Lidl, Tschebyscheffpolynome in mehreren Variablen, J. reine u. angew. Math. 273 (1975), 178-198.
R. Lidl, Tschebyscheffpolynome in mehreren Variablen, J. reine u. angew. Math. 273 (1975), 178-198.
R. Lidl and Ch. Wells, Chebyshev polynomials in several variables, J. reine u. angew. Math. 255 (1972), 104-111.
R. Lidl and Ch. Wells, Chebyshev polynomials in several variables, J. reine u. angew. Math. 255 (1972), 104-111.
P. A. MacMahon, Combinatory analysis (2 vols.), Chelsea, NY, 1960; see p. 5 (with a_k -> sigma_k).
FORMULA
T(n,k) = (n/m(n,k))*A111786(n,k) for the k-th partition of n with m(n,k) parts in the Abramowitz-Stegun order for n >= 1 and k = 1..p(n), where p(n) := A000041(n).
Explicitly: T(n,k) = (-1)^(n + m(n,k)) * n * (m(n,k) - 1)!/(Product_{j = 1..n} e(k,j)!), where m(n,k):= Sum_{j = 1..n} e(k,j), with [1^e(k, 1), 2^e(k,2), ..., n^e(k,n)] being the k-th partition of n in the mentioned order. For m(n,k), see A036043.
EXAMPLE
First few rows of triangle T(n,k) are as follows (see the link for rows 1..10):
1;
-2, 1;
3, -3, 1;
-4, 4, 2, -4, 1;
5, -5, -5, 5, 5, -5, 1;
...
n=4: N*t^{(N)}_4 = -4*(sigma_4)^1 + 4*(sigma_1)*(sigma_3) + 2*(sigma_2)^2 -4*(sigma_1)^2*(sigma_2) + 1*(sigma_1)^4.
(For 2 <= N < 4, one puts sigma_{N+1} = 0 = ... = sigma_4 = 0.) This becomes Sum_{k = 1..N} (x_k)^4 if the sigma functions are written in terms of the variables x_1, x_2, ..., x_N. E.g., for N=2: 0 + 0 + 2*(x_1*x_2)^2 -4*(x_1 + x_2)^2*(x_1*x_2) + 1*(x_1 + x_2)^4 = (x_1)^4 + (x_2)^4.
CROSSREFS
Cf. A210258 (in another ordering of partitions), A132460 (N=2), A325477 (N=3),
A324602 (N=4).
Sequence in context: A307449 A368748 A207645 * A263916 A210258 A181108
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Jan 13 2006
EXTENSIONS
Various sections edited by Petros Hadjicostas, Dec 14 2019
STATUS
approved